import os import cv2 import torch import numpy as np import gradio as gr import trimesh import sys import os sys.path.append('vggsfm_code/') import shutil from datetime import datetime from vggsfm_code.hf_demo import demo_fn from omegaconf import DictConfig, OmegaConf from viz_utils.viz_fn import add_camera import glob # from scipy.spatial.transform import Rotation import PIL import gc # import spaces # @spaces.GPU def vggsfm_demo( input_video, input_image, query_frame_num, max_query_pts=4096, ): gc.collect() torch.cuda.empty_cache() if input_video is not None: if not isinstance(input_video, str): input_video = input_video["video"]["path"] cfg_file = "vggsfm_code/cfgs/demo.yaml" cfg = OmegaConf.load(cfg_file) timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") max_input_image = 25 target_dir = f"input_images_{timestamp}" if os.path.exists(target_dir): shutil.rmtree(target_dir) os.makedirs(target_dir) target_dir_images = target_dir + "/images" os.makedirs(target_dir_images) if input_image is not None: if len(input_image)<3: return None, "Please input at least three frames" input_image = sorted(input_image) input_image = input_image[:max_input_image] # Copy files to the new directory for file_name in input_image: shutil.copy(file_name, target_dir_images) elif input_video is not None: vs = cv2.VideoCapture(input_video) fps = vs.get(cv2.CAP_PROP_FPS) frame_rate = 1 frame_interval = int(fps * frame_rate) video_frame_num = 0 count = 0 while video_frame_num<=max_input_image: (gotit, frame) = vs.read() count +=1 if not gotit: break if count % frame_interval == 0: cv2.imwrite(target_dir_images+"/"+f"{video_frame_num:06}.png", frame) video_frame_num+=1 if video_frame_num<3: return None, "Please input at least three frames" else: return None, "Input format incorrect" cfg.query_frame_num = query_frame_num cfg.max_query_pts = max_query_pts print(f"Files have been copied to {target_dir_images}") cfg.SCENE_DIR = target_dir # try: predictions = demo_fn(cfg) # except: # return None, "Something seems to be incorrect. Please verify that your inputs are formatted correctly. If the issue persists, kindly create a GitHub issue for further assistance." glbscene = vggsfm_predictions_to_glb(predictions) glbfile = target_dir + "/glbscene.glb" glbscene.export(file_obj=glbfile) del predictions gc.collect() torch.cuda.empty_cache() print(input_image) print(input_video) return glbfile, "Success" def vggsfm_predictions_to_glb(predictions): # learned from https://github.com/naver/dust3r/blob/main/dust3r/viz.py points3D = predictions["points3D"].cpu().numpy() points3D_rgb = predictions["points3D_rgb"].cpu().numpy() points3D_rgb = (points3D_rgb*255).astype(np.uint8) extrinsics_opencv = predictions["extrinsics_opencv"].cpu().numpy() intrinsics_opencv = predictions["intrinsics_opencv"].cpu().numpy() raw_image_paths = predictions["raw_image_paths"] images = predictions["images"].permute(0,2,3,1).cpu().numpy() images = (images*255).astype(np.uint8) glbscene = trimesh.Scene() point_cloud = trimesh.PointCloud(points3D, colors=points3D_rgb) glbscene.add_geometry(point_cloud) camera_edge_colors = [(255, 0, 0), (0, 0, 255), (0, 255, 0), (255, 0, 255), (255, 204, 0), (0, 204, 204), (128, 255, 255), (255, 128, 255), (255, 255, 128), (0, 0, 0), (128, 128, 128)] frame_num = len(extrinsics_opencv) extrinsics_opencv_4x4 = np.zeros((frame_num, 4, 4)) extrinsics_opencv_4x4[:, :3, :4] = extrinsics_opencv extrinsics_opencv_4x4[:, 3, 3] = 1 for idx in range(frame_num): cam_from_world = extrinsics_opencv_4x4[idx] cam_to_world = np.linalg.inv(cam_from_world) cur_cam_color = camera_edge_colors[idx % len(camera_edge_colors)] cur_focal = intrinsics_opencv[idx, 0, 0] add_camera(glbscene, cam_to_world, cur_cam_color, image=None, imsize=(1024,1024), focal=None,screen_width=0.35) opengl_mat = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) rot = np.eye(4) rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix() glbscene.apply_transform(np.linalg.inv(np.linalg.inv(extrinsics_opencv_4x4[0]) @ opengl_mat @ rot)) # Calculate the bounding box center and apply the translation bounding_box = glbscene.bounds center = (bounding_box[0] + bounding_box[1]) / 2 translation = np.eye(4) translation[:3, 3] = -center glbscene.apply_transform(translation) # glbfile = "glbscene.glb" # glbscene.export(file_obj=glbfile) return glbscene apple_video = "vggsfm_code/examples/videos/apple_video.mp4" # os.path.join(os.path.dirname(__file__), "apple_video.mp4") british_museum_video = "vggsfm_code/examples/videos/british_museum_video.mp4" # os.path.join(os.path.dirname(__file__), "british_museum_video.mp4") cake_video = "vggsfm_code/examples/videos/cake_video.mp4" bonsai_video = "vggsfm_code/examples/videos/bonsai_video.mp4" # os.path.join(os.path.dirname(__file__), "cake_video.mp4") apple_images = glob.glob(f'vggsfm_code/examples/apple/images/*') bonsai_images = glob.glob(f'vggsfm_code/examples/bonsai/images/*') cake_images = glob.glob(f'vggsfm_code/examples/cake/images/*') british_museum_images = glob.glob(f'vggsfm_code/examples/british_museum/images/*') with gr.Blocks() as demo: gr.Markdown("# 🏛️ VGGSfM: Visual Geometry Grounded Deep Structure From Motion") gr.Markdown(""" <div style="text-align: left;"> <p>Welcome to <a href="https://vggsfm.github.io/" target="_blank">VGGSfM</a> demo! This space demonstrates 3D reconstruction from input image frames. </p> <p>To get started quickly, you can click on our <strong> examples (the bottom of the page) </strong>. If you want to reconstruct your own data, simply: </p> <ul style="display: inline-block; text-align: left;"> <li>upload images (.jpg, .png, etc.), or </li> <li>upload a video (.mp4, .mov, etc.) </li> </ul> <p>If both images and videos are uploaded, the demo will only reconstruct the uploaded images. By default, we extract <strong> 1 image frame per second from the input video </strong>. To prevent crashes on the Hugging Face space, we currently limit reconstruction to the first 25 image frames. </p> <p>SfM methods are designed for <strong> rigid/static reconstruction </strong>. When dealing with dynamic/moving inputs, these methods may still work by focusing on the rigid parts of the scene. However, to ensure high-quality results, it is better to minimize the presence of moving objects in the input data. </p> <p>The reconstruction should typically take <strong> up to 90 seconds </strong>. If it takes longer, the input data is likely not well-conditioned or the query images/points are set too high. </p> <p>If you meet any problem, feel free to create an issue in our <a href="https://github.com/facebookresearch/vggsfm" target="_blank">GitHub Repo</a> ⭐</p> <p>(Please note that running reconstruction on Hugging Face space is slower than on a local machine.) </p> </div> """) with gr.Row(): with gr.Column(scale=1): input_video = gr.Video(label="Input video", interactive=True) input_images = gr.File(file_count="multiple", label="Input Images", interactive=True) num_query_images = gr.Slider(minimum=1, maximum=10, step=1, value=4, label="Number of query images (key frames)", info="More query images usually lead to better reconstruction at lower speeds. If the viewpoint differences between your images are minimal, you can set this value to 1. ") num_query_points = gr.Slider(minimum=600, maximum=6000, step=1, value=2048, label="Number of query points", info="More query points usually lead to denser reconstruction at lower speeds.") with gr.Column(scale=3): reconstruction_output = gr.Model3D(label="Reconstruction", height=520) log_output = gr.Textbox(label="Log") with gr.Row(): submit_btn = gr.Button("Reconstruct", scale=1) # submit_btn = gr.Button("Reconstruct", scale=1, elem_attributes={"style": "background-color: blue; color: white;"}) clear_btn = gr.ClearButton([input_video, input_images, num_query_images, num_query_points, reconstruction_output, log_output], scale=1) examples = [ [british_museum_video, british_museum_images, 1, 4096], [apple_video, apple_images, 6, 2048], [bonsai_video, bonsai_images, 3, 2048], # [cake_video, cake_images, 3, 2048], ] gr.Examples(examples=examples, inputs=[input_video, input_images, num_query_images, num_query_points], outputs=[reconstruction_output, log_output], # Provide outputs fn=vggsfm_demo, # Provide the function cache_examples=True, ) submit_btn.click( vggsfm_demo, [input_video, input_images, num_query_images, num_query_points], [reconstruction_output, log_output], concurrency_limit=1 ) # demo.launch(debug=True, share=True) demo.queue(max_size=20).launch(show_error=True, share=True) # demo.queue(max_size=20, concurrency_count=1).launch(debug=True, share=True) ######################################################################################################################## # else: # import glob # files = glob.glob(f'vggsfm_code/examples/cake/images/*', recursive=True) # vggsfm_demo(files, None, None) # demo.queue(max_size=20, concurrency_count=1).launch(debug=True, share=True)