File size: 12,438 Bytes
ee0444e
 
8fb8950
748b9ed
8fb8950
 
 
 
 
ecc5344
 
8fb8950
df28e5a
c3b9be5
df28e5a
 
 
c3b9be5
df28e5a
 
 
8fb8950
748b9ed
 
ecc5344
748b9ed
 
4936337
 
 
 
 
 
 
ecc5344
8fb8950
 
 
df28e5a
 
ecc5344
 
 
 
 
 
8fb8950
ecc5344
 
8fb8950
ecc5344
8fb8950
 
 
748b9ed
 
 
 
 
 
 
 
df28e5a
748b9ed
 
 
 
ecc5344
748b9ed
 
df28e5a
8fb8950
ecc5344
748b9ed
 
4936337
 
748b9ed
 
 
 
 
 
 
4936337
748b9ed
4936337
 
748b9ed
 
 
 
 
 
 
 
4936337
748b9ed
 
 
4936337
 
748b9ed
 
 
 
 
 
 
 
4936337
748b9ed
4936337
 
748b9ed
 
 
 
 
 
 
8fb8950
748b9ed
8fb8950
 
748b9ed
9419e6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
748b9ed
 
 
 
 
 
 
 
 
 
 
 
 
 
8fb8950
748b9ed
 
 
 
 
 
8fb8950
748b9ed
9419e6a
 
 
 
 
 
 
 
 
 
 
 
748b9ed
 
 
 
 
 
 
 
 
 
 
 
 
4936337
 
748b9ed
 
 
 
 
8fb8950
748b9ed
 
9419e6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
748b9ed
 
 
 
 
 
 
4936337
748b9ed
 
 
 
4936337
748b9ed
 
 
 
4936337
748b9ed
 
 
 
4936337
8fb8950
748b9ed
 
 
 
8fb8950
 
748b9ed
 
 
 
 
8fb8950
748b9ed
 
 
 
9419e6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
748b9ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fb8950
748b9ed
 
 
 
 
 
 
 
 
 
 
9419e6a
 
 
 
 
 
 
 
 
 
 
 
748b9ed
 
 
 
 
4936337
748b9ed
 
 
 
4936337
8fb8950
 
 
748b9ed
 
 
 
 
 
 
 
 
 
 
 
 
8fb8950
29e6f40
748b9ed
 
 
 
 
 
 
 
 
 
 
 
 
ecc5344
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
from __future__ import annotations

import os
import pathlib

import gradio as gr
import numpy as np
import torch
import torchaudio
from huggingface_hub import snapshot_download
from seamless_communication.inference import Translator

from lang_list import (
    ASR_TARGET_LANGUAGE_NAMES,
    LANGUAGE_NAME_TO_CODE,
    S2ST_TARGET_LANGUAGE_NAMES,
    S2TT_TARGET_LANGUAGE_NAMES,
    T2ST_TARGET_LANGUAGE_NAMES,
    T2TT_TARGET_LANGUAGE_NAMES,
    TEXT_SOURCE_LANGUAGE_NAMES,
)

if not pathlib.Path("models").exists():
    snapshot_download(repo_id="meta-private/M4Tv2", repo_type="model", local_dir="models")

DESCRIPTION = """\
# SeamlessM4T

[SeamlessM4T](https://github.com/facebookresearch/seamless_communication) is designed to provide high-quality
translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.
This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST)
translation and more, without relying on multiple separate models.
"""

CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" and torch.cuda.is_available()

AUDIO_SAMPLE_RATE = 16000.0
MAX_INPUT_AUDIO_LENGTH = 60  # in seconds
DEFAULT_TARGET_LANGUAGE = "French"

if torch.cuda.is_available():
    device = torch.device("cuda:0")
    dtype = torch.float16
else:
    device = torch.device("cpu")
    dtype = torch.float32
translator = Translator(
    model_name_or_card="seamlessM4T_v2_large",
    vocoder_name_or_card="vocoder_v2",
    device=device,
    dtype=dtype,
)


def preprocess_audio(input_audio: str) -> None:
    arr, org_sr = torchaudio.load(input_audio)
    new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
    max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
    if new_arr.shape[1] > max_length:
        new_arr = new_arr[:, :max_length]
        gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
    torchaudio.save(input_audio, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))


def run_s2st(input_audio: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
    preprocess_audio(input_audio)
    target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
    out_texts, out_audios = translator.predict(
        input=input_audio,
        task_str="S2ST",
        tgt_lang=target_language_code,
    )
    out_text = str(out_texts[0])
    out_wav = out_audios.audio_wavs[0].cpu().detach().numpy()
    return (int(AUDIO_SAMPLE_RATE), out_wav), out_text


def run_s2tt(input_audio: str, target_language: str) -> str:
    preprocess_audio(input_audio)
    target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
    out_texts, _ = translator.predict(
        input=input_audio,
        task_str="S2TT",
        tgt_lang=target_language_code,
    )
    return str(out_texts[0])


def run_t2st(input_text: str, source_language: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
    source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
    target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
    out_texts, out_audios = translator.predict(
        input=input_text,
        task_str="T2ST",
        tgt_lang=target_language_code,
        src_lang=source_language_code,
    )
    out_text = str(out_texts[0])
    out_wav = out_audios.audio_wavs[0].cpu().detach().numpy()
    return (int(AUDIO_SAMPLE_RATE), out_wav), out_text


def run_t2tt(input_text: str, source_language: str, target_language: str) -> str:
    source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
    target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
    out_texts, _ = translator.predict(
        input=input_text,
        task_str="T2TT",
        tgt_lang=target_language_code,
        src_lang=source_language_code,
    )
    return str(out_texts[0])


def run_asr(input_audio: str, target_language: str) -> str:
    preprocess_audio(input_audio)
    target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
    out_texts, _ = translator.predict(
        input=input_audio,
        task_str="ASR",
        tgt_lang=target_language_code,
    )
    return str(out_texts[0])


with gr.Blocks() as demo_s2st:
    with gr.Row():
        with gr.Column():
            with gr.Group():
                target_language = gr.Dropdown(
                    label="Target language",
                    choices=S2ST_TARGET_LANGUAGE_NAMES,
                    value=DEFAULT_TARGET_LANGUAGE,
                )
                input_audio = gr.Audio(label="Input speech", type="filepath")
            btn = gr.Button("Translate")
        with gr.Column():
            with gr.Group():
                output_audio = gr.Audio(
                    label="Translated speech",
                    autoplay=False,
                    streaming=False,
                    type="numpy",
                )
                output_text = gr.Textbox(label="Translated text")

    gr.Examples(
        examples=[
            ["assets/sample_input.mp3", "French"],
            ["assets/sample_input.mp3", "Mandarin Chinese"],
            ["assets/sample_input_2.mp3", "Hindi"],
            ["assets/sample_input_2.mp3", "Spanish"],
        ],
        inputs=[input_audio, target_language],
        outputs=[output_audio, output_text],
        fn=run_s2st,
        cache_examples=CACHE_EXAMPLES,
        api_name=False,
    )

    btn.click(
        fn=run_s2st,
        inputs=[input_audio, target_language],
        outputs=[output_audio, output_text],
        api_name="s2st",
    )

with gr.Blocks() as demo_s2tt:
    with gr.Row():
        with gr.Column():
            with gr.Group():
                target_language = gr.Dropdown(
                    label="Target language",
                    choices=S2TT_TARGET_LANGUAGE_NAMES,
                    value=DEFAULT_TARGET_LANGUAGE,
                )
                input_audio = gr.Audio(label="Input speech", type="filepath")
            btn = gr.Button("Translate")
        with gr.Column():
            output_text = gr.Textbox(label="Translated text")

    gr.Examples(
        examples=[
            ["assets/sample_input.mp3", "French"],
            ["assets/sample_input.mp3", "Mandarin Chinese"],
            ["assets/sample_input_2.mp3", "Hindi"],
            ["assets/sample_input_2.mp3", "Spanish"],
        ],
        inputs=[input_audio, target_language],
        outputs=output_text,
        fn=run_s2tt,
        cache_examples=CACHE_EXAMPLES,
        api_name=False,
    )

    btn.click(
        fn=run_s2tt,
        inputs=[input_audio, target_language],
        outputs=output_text,
        api_name="s2tt",
    )

with gr.Blocks() as demo_t2st:
    with gr.Row():
        with gr.Column():
            with gr.Group():
                with gr.Row():
                    source_language = gr.Dropdown(
                        label="Source language",
                        choices=TEXT_SOURCE_LANGUAGE_NAMES,
                        value="English",
                    )
                    target_language = gr.Dropdown(
                        label="Target language",
                        choices=T2ST_TARGET_LANGUAGE_NAMES,
                        value=DEFAULT_TARGET_LANGUAGE,
                    )
                input_text = gr.Textbox(label="Input text")
            btn = gr.Button("Translate")
        with gr.Column():
            with gr.Group():
                output_audio = gr.Audio(
                    label="Translated speech",
                    autoplay=False,
                    streaming=False,
                    type="numpy",
                )
                output_text = gr.Textbox(label="Translated text")

    gr.Examples(
        examples=[
            [
                "My favorite animal is the elephant.",
                "English",
                "French",
            ],
            [
                "My favorite animal is the elephant.",
                "English",
                "Mandarin Chinese",
            ],
            [
                "Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
                "English",
                "Hindi",
            ],
            [
                "Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
                "English",
                "Spanish",
            ],
        ],
        inputs=[input_text, source_language, target_language],
        outputs=[output_audio, output_text],
        fn=run_t2st,
        cache_examples=CACHE_EXAMPLES,
        api_name=False,
    )

    gr.on(
        triggers=[input_text.submit, btn.click],
        fn=run_t2st,
        inputs=[input_text, source_language, target_language],
        outputs=[output_audio, output_text],
        api_name="t2st",
    )

with gr.Blocks() as demo_t2tt:
    with gr.Row():
        with gr.Column():
            with gr.Group():
                with gr.Row():
                    source_language = gr.Dropdown(
                        label="Source language",
                        choices=TEXT_SOURCE_LANGUAGE_NAMES,
                        value="English",
                    )
                    target_language = gr.Dropdown(
                        label="Target language",
                        choices=T2TT_TARGET_LANGUAGE_NAMES,
                        value=DEFAULT_TARGET_LANGUAGE,
                    )
                input_text = gr.Textbox(label="Input text")
            btn = gr.Button("Translate")
        with gr.Column():
            output_text = gr.Textbox(label="Translated text")

    gr.Examples(
        examples=[
            [
                "My favorite animal is the elephant.",
                "English",
                "French",
            ],
            [
                "My favorite animal is the elephant.",
                "English",
                "Mandarin Chinese",
            ],
            [
                "Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
                "English",
                "Hindi",
            ],
            [
                "Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
                "English",
                "Spanish",
            ],
        ],
        inputs=[input_text, source_language, target_language],
        outputs=output_text,
        fn=run_t2tt,
        cache_examples=CACHE_EXAMPLES,
        api_name=False,
    )

    gr.on(
        triggers=[input_text.submit, btn.click],
        fn=run_t2tt,
        inputs=[input_text, source_language, target_language],
        outputs=output_text,
        api_name="t2tt",
    )

with gr.Blocks() as demo_asr:
    with gr.Row():
        with gr.Column():
            with gr.Group():
                target_language = gr.Dropdown(
                    label="Target language",
                    choices=ASR_TARGET_LANGUAGE_NAMES,
                    value=DEFAULT_TARGET_LANGUAGE,
                )
                input_audio = gr.Audio(label="Input speech", type="filepath")
            btn = gr.Button("Translate")
        with gr.Column():
            output_text = gr.Textbox(label="Translated text")

    gr.Examples(
        examples=[
            ["assets/sample_input.mp3", "English"],
            ["assets/sample_input_2.mp3", "English"],
        ],
        inputs=[input_audio, target_language],
        outputs=output_text,
        fn=run_asr,
        cache_examples=CACHE_EXAMPLES,
        api_name=False,
    )

    btn.click(
        fn=run_asr,
        inputs=[input_audio, target_language],
        outputs=output_text,
        api_name="asr",
    )


with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )

    with gr.Tabs():
        with gr.Tab(label="S2ST"):
            demo_s2st.render()
        with gr.Tab(label="S2TT"):
            demo_s2tt.render()
        with gr.Tab(label="T2ST"):
            demo_t2st.render()
        with gr.Tab(label="T2TT"):
            demo_t2tt.render()
        with gr.Tab(label="ASR"):
            demo_asr.render()


if __name__ == "__main__":
    demo.queue(max_size=50).launch()