Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,207 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from abc import ABCMeta
from typing import List, Optional, Tuple
from mmengine.model import BaseModule
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures import TrackSampleList
from mmdet.structures.bbox import bbox2roi
from mmdet.utils import InstanceList
@MODELS.register_module()
class RoITrackHead(BaseModule, metaclass=ABCMeta):
"""The roi track head.
This module is used in multi-object tracking methods, such as MaskTrack
R-CNN.
Args:
roi_extractor (dict): Configuration of roi extractor. Defaults to None.
embed_head (dict): Configuration of embed head. Defaults to None.
train_cfg (dict): Configuration when training. Defaults to None.
test_cfg (dict): Configuration when testing. Defaults to None.
init_cfg (dict): Configuration of initialization. Defaults to None.
"""
def __init__(self,
roi_extractor: Optional[dict] = None,
embed_head: Optional[dict] = None,
regress_head: Optional[dict] = None,
train_cfg: Optional[dict] = None,
test_cfg: Optional[dict] = None,
init_cfg: Optional[dict] = None,
*args,
**kwargs):
super().__init__(init_cfg=init_cfg)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
if embed_head is not None:
self.init_embed_head(roi_extractor, embed_head)
if regress_head is not None:
raise NotImplementedError('Regression head is not supported yet.')
self.init_assigner_sampler()
def init_embed_head(self, roi_extractor, embed_head) -> None:
"""Initialize ``embed_head``"""
self.roi_extractor = MODELS.build(roi_extractor)
self.embed_head = MODELS.build(embed_head)
def init_assigner_sampler(self) -> None:
"""Initialize assigner and sampler."""
self.bbox_assigner = None
self.bbox_sampler = None
if self.train_cfg:
self.bbox_assigner = TASK_UTILS.build(self.train_cfg.assigner)
self.bbox_sampler = TASK_UTILS.build(
self.train_cfg.sampler, default_args=dict(context=self))
@property
def with_track(self) -> bool:
"""bool: whether the multi-object tracker has an embed head"""
return hasattr(self, 'embed_head') and self.embed_head is not None
def extract_roi_feats(
self, feats: List[Tensor],
bboxes: List[Tensor]) -> Tuple[Tuple[Tensor], List[int]]:
"""Extract roi features.
Args:
feats (list[Tensor]): list of multi-level image features.
bboxes (list[Tensor]): list of bboxes in sampling result.
Returns:
tuple[tuple[Tensor], list[int]]: The extracted roi features and
the number of bboxes in each image.
"""
rois = bbox2roi(bboxes)
bbox_feats = self.roi_extractor(feats[:self.roi_extractor.num_inputs],
rois)
num_bbox_per_img = [len(bbox) for bbox in bboxes]
return bbox_feats, num_bbox_per_img
def loss(self, key_feats: List[Tensor], ref_feats: List[Tensor],
rpn_results_list: InstanceList, data_samples: TrackSampleList,
**kwargs) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
key_feats (list[Tensor]): list of multi-level image features.
ref_feats (list[Tensor]): list of multi-level ref_img features.
rpn_results_list (list[:obj:`InstanceData`]): List of region
proposals.
data_samples (list[:obj:`TrackDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance`.
Returns:
dict: A dictionary of loss components.
"""
assert self.with_track
batch_gt_instances = []
ref_batch_gt_instances = []
batch_gt_instances_ignore = []
gt_instance_ids = []
ref_gt_instance_ids = []
for track_data_sample in data_samples:
key_data_sample = track_data_sample.get_key_frames()[0]
ref_data_sample = track_data_sample.get_ref_frames()[0]
batch_gt_instances.append(key_data_sample.gt_instances)
ref_batch_gt_instances.append(ref_data_sample.gt_instances)
if 'ignored_instances' in key_data_sample:
batch_gt_instances_ignore.append(
key_data_sample.ignored_instances)
else:
batch_gt_instances_ignore.append(None)
gt_instance_ids.append(key_data_sample.gt_instances.instances_ids)
ref_gt_instance_ids.append(
ref_data_sample.gt_instances.instances_ids)
losses = dict()
num_imgs = len(data_samples)
if batch_gt_instances_ignore is None:
batch_gt_instances_ignore = [None] * num_imgs
sampling_results = []
for i in range(num_imgs):
rpn_results = rpn_results_list[i]
assign_result = self.bbox_assigner.assign(
rpn_results, batch_gt_instances[i],
batch_gt_instances_ignore[i])
sampling_result = self.bbox_sampler.sample(
assign_result,
rpn_results,
batch_gt_instances[i],
feats=[lvl_feat[i][None] for lvl_feat in key_feats])
sampling_results.append(sampling_result)
bboxes = [res.bboxes for res in sampling_results]
bbox_feats, num_bbox_per_img = self.extract_roi_feats(
key_feats, bboxes)
# batch_size is 1
ref_gt_bboxes = [
ref_batch_gt_instance.bboxes
for ref_batch_gt_instance in ref_batch_gt_instances
]
ref_bbox_feats, num_bbox_per_ref_img = self.extract_roi_feats(
ref_feats, ref_gt_bboxes)
loss_track = self.embed_head.loss(bbox_feats, ref_bbox_feats,
num_bbox_per_img,
num_bbox_per_ref_img,
sampling_results, gt_instance_ids,
ref_gt_instance_ids)
losses.update(loss_track)
return losses
def predict(self, roi_feats: Tensor,
prev_roi_feats: Tensor) -> List[Tensor]:
"""Perform forward propagation of the tracking head and predict
tracking results on the features of the upstream network.
Args:
roi_feats (Tensor): Feature map of current images rois.
prev_roi_feats (Tensor): Feature map of previous images rois.
Returns:
list[Tensor]: The predicted similarity_logits of each pair of key
image and reference image.
"""
return self.embed_head.predict(roi_feats, prev_roi_feats)[0]
|