File size: 10,336 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from collections import defaultdict
from typing import Tuple

import numpy as np
import torch
from mmengine.model import BaseModule
from mmengine.runner.checkpoint import load_checkpoint
from scipy.optimize import linear_sum_assignment
from torch import Tensor, nn

from mmdet.registry import TASK_UTILS

INFINITY = 1e5


class TemporalBlock(BaseModule):
    """The temporal block of AFLink model.

    Args:
        in_channel (int): the dimension of the input channels.
        out_channel (int): the dimension of the output channels.
    """

    def __init__(self,
                 in_channel: int,
                 out_channel: int,
                 kernel_size: tuple = (7, 1)):
        super(TemporalBlock, self).__init__()
        self.conv = nn.Conv2d(in_channel, out_channel, kernel_size, bias=False)
        self.relu = nn.ReLU(inplace=True)
        self.bnf = nn.BatchNorm1d(out_channel)
        self.bnx = nn.BatchNorm1d(out_channel)
        self.bny = nn.BatchNorm1d(out_channel)

    def bn(self, x: Tensor) -> Tensor:
        x[:, :, :, 0] = self.bnf(x[:, :, :, 0])
        x[:, :, :, 1] = self.bnx(x[:, :, :, 1])
        x[:, :, :, 2] = self.bny(x[:, :, :, 2])
        return x

    def forward(self, x: Tensor) -> Tensor:
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x


class FusionBlock(BaseModule):
    """The fusion block of AFLink model.

    Args:
        in_channel (int): the dimension of the input channels.
        out_channel (int): the dimension of the output channels.
    """

    def __init__(self, in_channel: int, out_channel: int):
        super(FusionBlock, self).__init__()
        self.conv = nn.Conv2d(in_channel, out_channel, (1, 3), bias=False)
        self.bn = nn.BatchNorm2d(out_channel)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x: Tensor) -> Tensor:
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x


class Classifier(BaseModule):
    """The classifier of AFLink model.

    Args:
        in_channel (int): the dimension of the input channels.
    """

    def __init__(self, in_channel: int, out_channel: int):
        super(Classifier, self).__init__()
        self.fc1 = nn.Linear(in_channel * 2, in_channel // 2)
        self.relu = nn.ReLU(inplace=True)
        self.fc2 = nn.Linear(in_channel // 2, out_channel)

    def forward(self, x1: Tensor, x2: Tensor) -> Tensor:
        x = torch.cat((x1, x2), dim=1)
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        return x


class AFLinkModel(BaseModule):
    """Appearance-Free Link Model."""

    def __init__(self,
                 temporal_module_channels: list = [1, 32, 64, 128, 256],
                 fusion_module_channels: list = [256, 256],
                 classifier_channels: list = [256, 2]):
        super(AFLinkModel, self).__init__()
        self.TemporalModule_1 = nn.Sequential(*[
            TemporalBlock(temporal_module_channels[i],
                          temporal_module_channels[i + 1])
            for i in range(len(temporal_module_channels) - 1)
        ])

        self.TemporalModule_2 = nn.Sequential(*[
            TemporalBlock(temporal_module_channels[i],
                          temporal_module_channels[i + 1])
            for i in range(len(temporal_module_channels) - 1)
        ])

        self.FusionBlock_1 = FusionBlock(*fusion_module_channels)
        self.FusionBlock_2 = FusionBlock(*fusion_module_channels)

        self.pooling = nn.AdaptiveAvgPool2d((1, 1))
        self.classifier = Classifier(*classifier_channels)

    def forward(self, x1: Tensor, x2: Tensor) -> Tensor:
        assert not self.training, 'Only testing is supported for AFLink.'
        x1 = x1[:, :, :, :3]
        x2 = x2[:, :, :, :3]
        x1 = self.TemporalModule_1(x1)  # [B,1,30,3] -> [B,256,6,3]
        x2 = self.TemporalModule_2(x2)
        x1 = self.FusionBlock_1(x1)
        x2 = self.FusionBlock_2(x2)
        x1 = self.pooling(x1).squeeze(-1).squeeze(-1)
        x2 = self.pooling(x2).squeeze(-1).squeeze(-1)
        y = self.classifier(x1, x2)
        y = torch.softmax(y, dim=1)[0, 1]
        return y


@TASK_UTILS.register_module()
class AppearanceFreeLink(BaseModule):
    """Appearance-Free Link method.

    This method is proposed in
    "StrongSORT: Make DeepSORT Great Again"
    `StrongSORT<https://arxiv.org/abs/2202.13514>`_.

    Args:
        checkpoint (str): Checkpoint path.
        temporal_threshold (tuple, optional): The temporal constraint
            for tracklets association. Defaults to (0, 30).
        spatial_threshold (int, optional): The spatial constraint for
            tracklets association. Defaults to 75.
        confidence_threshold (float, optional): The minimum confidence
            threshold for tracklets association. Defaults to 0.95.
    """

    def __init__(self,
                 checkpoint: str,
                 temporal_threshold: tuple = (0, 30),
                 spatial_threshold: int = 75,
                 confidence_threshold: float = 0.95):
        super(AppearanceFreeLink, self).__init__()
        self.temporal_threshold = temporal_threshold
        self.spatial_threshold = spatial_threshold
        self.confidence_threshold = confidence_threshold

        self.model = AFLinkModel()
        if checkpoint:
            load_checkpoint(self.model, checkpoint)
        if torch.cuda.is_available():
            self.model.cuda()
        self.model.eval()

        self.device = next(self.model.parameters()).device
        self.fn_l2 = lambda x, y: np.sqrt(x**2 + y**2)

    def data_transform(self,
                       track1: np.ndarray,
                       track2: np.ndarray,
                       length: int = 30) -> Tuple[np.ndarray]:
        """Data Transformation. This is used to standardize the length of
        tracks to a unified length. Then perform min-max normalization to the
        motion embeddings.

        Args:
            track1 (ndarray): the first track with shape (N,C).
            track2 (ndarray): the second track with shape (M,C).
            length (int): the unified length of tracks. Defaults to 30.

        Returns:
            Tuple[ndarray]: the transformed track1 and track2.
        """
        # fill or cut track1
        length_1 = track1.shape[0]
        track1 = track1[-length:] if length_1 >= length else \
            np.pad(track1, ((length - length_1, 0), (0, 0)))

        # fill or cut track1
        length_2 = track2.shape[0]
        track2 = track2[:length] if length_2 >= length else \
            np.pad(track2, ((0, length - length_2), (0, 0)))

        # min-max normalization
        min_ = np.concatenate((track1, track2), axis=0).min(axis=0)
        max_ = np.concatenate((track1, track2), axis=0).max(axis=0)
        subtractor = (max_ + min_) / 2
        divisor = (max_ - min_) / 2 + 1e-5
        track1 = (track1 - subtractor) / divisor
        track2 = (track2 - subtractor) / divisor

        return track1, track2

    def forward(self, pred_tracks: np.ndarray) -> np.ndarray:
        """Forward function.

        pred_tracks (ndarray): With shape (N, 7). Each row denotes
            (frame_id, track_id, x1, y1, x2, y2, score).

        Returns:
            ndarray: The linked tracks with shape (N, 7). Each row denotes
                (frame_id, track_id, x1, y1, x2, y2, score)
        """
        # sort tracks by the frame id
        pred_tracks = pred_tracks[np.argsort(pred_tracks[:, 0])]

        # gather tracks information
        id2info = defaultdict(list)
        for row in pred_tracks:
            frame_id, track_id, x1, y1, x2, y2 = row[:6]
            id2info[track_id].append([frame_id, x1, y1, x2 - x1, y2 - y1])
        id2info = {k: np.array(v) for k, v in id2info.items()}
        num_track = len(id2info)
        track_ids = np.array(list(id2info))
        cost_matrix = np.full((num_track, num_track), INFINITY)

        # compute the cost matrix
        for i, id_i in enumerate(track_ids):
            for j, id_j in enumerate(track_ids):
                if id_i == id_j:
                    continue
                info_i, info_j = id2info[id_i], id2info[id_j]
                frame_i, box_i = info_i[-1][0], info_i[-1][1:3]
                frame_j, box_j = info_j[0][0], info_j[0][1:3]
                # temporal constraint
                if not self.temporal_threshold[0] <= \
                        frame_j - frame_i <= self.temporal_threshold[1]:
                    continue
                # spatial constraint
                if self.fn_l2(box_i[0] - box_j[0], box_i[1] - box_j[1]) \
                        > self.spatial_threshold:
                    continue
                # confidence constraint
                track_i, track_j = self.data_transform(info_i, info_j)

                # numpy to torch
                track_i = torch.tensor(
                    track_i, dtype=torch.float).to(self.device)
                track_j = torch.tensor(
                    track_j, dtype=torch.float).to(self.device)
                track_i = track_i.unsqueeze(0).unsqueeze(0)
                track_j = track_j.unsqueeze(0).unsqueeze(0)

                confidence = self.model(track_i,
                                        track_j).detach().cpu().numpy()
                if confidence >= self.confidence_threshold:
                    cost_matrix[i, j] = 1 - confidence

        # linear assignment
        indices = linear_sum_assignment(cost_matrix)
        _id2id = dict()  # the temporary assignment results
        id2id = dict()  # the final assignment results
        for i, j in zip(indices[0], indices[1]):
            if cost_matrix[i, j] < INFINITY:
                _id2id[i] = j
        for k, v in _id2id.items():
            if k in id2id:
                id2id[v] = id2id[k]
            else:
                id2id[v] = k

        # link
        for k, v in id2id.items():
            pred_tracks[pred_tracks[:, 1] == k, 1] = v

        # deduplicate
        _, index = np.unique(pred_tracks[:, :2], return_index=True, axis=0)

        return pred_tracks[index]