Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,560 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import warnings
import numpy as np
import torch
from torch import Tensor
from mmdet.structures.bbox import BaseBoxes, cat_boxes
from mmdet.utils import util_mixins
from mmdet.utils.util_random import ensure_rng
from ..assigners import AssignResult
def random_boxes(num=1, scale=1, rng=None):
"""Simple version of ``kwimage.Boxes.random``
Returns:
Tensor: shape (n, 4) in x1, y1, x2, y2 format.
References:
https://gitlab.kitware.com/computer-vision/kwimage/blob/master/kwimage/structs/boxes.py#L1390
Example:
>>> num = 3
>>> scale = 512
>>> rng = 0
>>> boxes = random_boxes(num, scale, rng)
>>> print(boxes)
tensor([[280.9925, 278.9802, 308.6148, 366.1769],
[216.9113, 330.6978, 224.0446, 456.5878],
[405.3632, 196.3221, 493.3953, 270.7942]])
"""
rng = ensure_rng(rng)
tlbr = rng.rand(num, 4).astype(np.float32)
tl_x = np.minimum(tlbr[:, 0], tlbr[:, 2])
tl_y = np.minimum(tlbr[:, 1], tlbr[:, 3])
br_x = np.maximum(tlbr[:, 0], tlbr[:, 2])
br_y = np.maximum(tlbr[:, 1], tlbr[:, 3])
tlbr[:, 0] = tl_x * scale
tlbr[:, 1] = tl_y * scale
tlbr[:, 2] = br_x * scale
tlbr[:, 3] = br_y * scale
boxes = torch.from_numpy(tlbr)
return boxes
class SamplingResult(util_mixins.NiceRepr):
"""Bbox sampling result.
Args:
pos_inds (Tensor): Indices of positive samples.
neg_inds (Tensor): Indices of negative samples.
priors (Tensor): The priors can be anchors or points,
or the bboxes predicted by the previous stage.
gt_bboxes (Tensor): Ground truth of bboxes.
assign_result (:obj:`AssignResult`): Assigning results.
gt_flags (Tensor): The Ground truth flags.
avg_factor_with_neg (bool): If True, ``avg_factor`` equal to
the number of total priors; Otherwise, it is the number of
positive priors. Defaults to True.
Example:
>>> # xdoctest: +IGNORE_WANT
>>> from mmdet.models.task_modules.samplers.sampling_result import * # NOQA
>>> self = SamplingResult.random(rng=10)
>>> print(f'self = {self}')
self = <SamplingResult({
'neg_inds': tensor([1, 2, 3, 5, 6, 7, 8,
9, 10, 11, 12, 13]),
'neg_priors': torch.Size([12, 4]),
'num_gts': 1,
'num_neg': 12,
'num_pos': 1,
'avg_factor': 13,
'pos_assigned_gt_inds': tensor([0]),
'pos_inds': tensor([0]),
'pos_is_gt': tensor([1], dtype=torch.uint8),
'pos_priors': torch.Size([1, 4])
})>
"""
def __init__(self,
pos_inds: Tensor,
neg_inds: Tensor,
priors: Tensor,
gt_bboxes: Tensor,
assign_result: AssignResult,
gt_flags: Tensor,
avg_factor_with_neg: bool = True) -> None:
self.pos_inds = pos_inds
self.neg_inds = neg_inds
self.num_pos = max(pos_inds.numel(), 1)
self.num_neg = max(neg_inds.numel(), 1)
self.avg_factor_with_neg = avg_factor_with_neg
self.avg_factor = self.num_pos + self.num_neg \
if avg_factor_with_neg else self.num_pos
self.pos_priors = priors[pos_inds]
self.neg_priors = priors[neg_inds]
self.pos_is_gt = gt_flags[pos_inds]
self.num_gts = gt_bboxes.shape[0]
self.pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1
self.pos_gt_labels = assign_result.labels[pos_inds]
box_dim = gt_bboxes.box_dim if isinstance(gt_bboxes, BaseBoxes) else 4
if gt_bboxes.numel() == 0:
# hack for index error case
assert self.pos_assigned_gt_inds.numel() == 0
self.pos_gt_bboxes = gt_bboxes.view(-1, box_dim)
else:
if len(gt_bboxes.shape) < 2:
gt_bboxes = gt_bboxes.view(-1, box_dim)
self.pos_gt_bboxes = gt_bboxes[self.pos_assigned_gt_inds.long()]
@property
def priors(self):
"""torch.Tensor: concatenated positive and negative priors"""
return cat_boxes([self.pos_priors, self.neg_priors])
@property
def bboxes(self):
"""torch.Tensor: concatenated positive and negative boxes"""
warnings.warn('DeprecationWarning: bboxes is deprecated, '
'please use "priors" instead')
return self.priors
@property
def pos_bboxes(self):
warnings.warn('DeprecationWarning: pos_bboxes is deprecated, '
'please use "pos_priors" instead')
return self.pos_priors
@property
def neg_bboxes(self):
warnings.warn('DeprecationWarning: neg_bboxes is deprecated, '
'please use "neg_priors" instead')
return self.neg_priors
def to(self, device):
"""Change the device of the data inplace.
Example:
>>> self = SamplingResult.random()
>>> print(f'self = {self.to(None)}')
>>> # xdoctest: +REQUIRES(--gpu)
>>> print(f'self = {self.to(0)}')
"""
_dict = self.__dict__
for key, value in _dict.items():
if isinstance(value, (torch.Tensor, BaseBoxes)):
_dict[key] = value.to(device)
return self
def __nice__(self):
data = self.info.copy()
data['pos_priors'] = data.pop('pos_priors').shape
data['neg_priors'] = data.pop('neg_priors').shape
parts = [f"'{k}': {v!r}" for k, v in sorted(data.items())]
body = ' ' + ',\n '.join(parts)
return '{\n' + body + '\n}'
@property
def info(self):
"""Returns a dictionary of info about the object."""
return {
'pos_inds': self.pos_inds,
'neg_inds': self.neg_inds,
'pos_priors': self.pos_priors,
'neg_priors': self.neg_priors,
'pos_is_gt': self.pos_is_gt,
'num_gts': self.num_gts,
'pos_assigned_gt_inds': self.pos_assigned_gt_inds,
'num_pos': self.num_pos,
'num_neg': self.num_neg,
'avg_factor': self.avg_factor
}
@classmethod
def random(cls, rng=None, **kwargs):
"""
Args:
rng (None | int | numpy.random.RandomState): seed or state.
kwargs (keyword arguments):
- num_preds: Number of predicted boxes.
- num_gts: Number of true boxes.
- p_ignore (float): Probability of a predicted box assigned to
an ignored truth.
- p_assigned (float): probability of a predicted box not being
assigned.
Returns:
:obj:`SamplingResult`: Randomly generated sampling result.
Example:
>>> from mmdet.models.task_modules.samplers.sampling_result import * # NOQA
>>> self = SamplingResult.random()
>>> print(self.__dict__)
"""
from mmengine.structures import InstanceData
from mmdet.models.task_modules.assigners import AssignResult
from mmdet.models.task_modules.samplers import RandomSampler
rng = ensure_rng(rng)
# make probabilistic?
num = 32
pos_fraction = 0.5
neg_pos_ub = -1
assign_result = AssignResult.random(rng=rng, **kwargs)
# Note we could just compute an assignment
priors = random_boxes(assign_result.num_preds, rng=rng)
gt_bboxes = random_boxes(assign_result.num_gts, rng=rng)
gt_labels = torch.randint(
0, 5, (assign_result.num_gts, ), dtype=torch.long)
pred_instances = InstanceData()
pred_instances.priors = priors
gt_instances = InstanceData()
gt_instances.bboxes = gt_bboxes
gt_instances.labels = gt_labels
add_gt_as_proposals = True
sampler = RandomSampler(
num,
pos_fraction,
neg_pos_ub=neg_pos_ub,
add_gt_as_proposals=add_gt_as_proposals,
rng=rng)
self = sampler.sample(
assign_result=assign_result,
pred_instances=pred_instances,
gt_instances=gt_instances)
return self
|