Spaces:
Build error
Build error
File size: 2,554 Bytes
e5d93c0 ec5489a e5d93c0 388e862 ec5489a e5d93c0 ec5489a e5d93c0 ec5489a e5d93c0 ec5489a e5d93c0 ec5489a 5ee0b21 e5d93c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import gradio as gr
import librosa
from transformers import AutoFeatureExtractor, AutoTokenizer, SpeechEncoderDecoderModel
import torch
model_name = "facebook/wav2vec2-xls-r-2b-22-to-16"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
model = SpeechEncoderDecoderModel.from_pretrained(model_name).to(device)
def process_audio_file(file):
data, sr = librosa.load(file)
if sr != 16000:
data = librosa.resample(data, sr, 16000)
print(data.shape)
input_values = feature_extractor(data, return_tensors="pt").input_values.to(device)
return input_values
def transcribe(file, target_language):
target_code = target_language.split("(")[-1].split(")")[0]
forced_bos_token_id = MAPPING[target_code]
input_values = process_audio_file(file)
sequences = model.generate(input_values, forced_bos_token_id=forced_bos_token_id)
transcription = tokenizer.batch_decode(sequences, skip_special_tokens=True)
return transcription[0]
target_language = [
"English (en)",
"German (de)",
"Turkish (tr)",
"Persian (fa)",
"Swedish (sv)",
"Mongolian (mn)",
"Chinese (zh)",
"Welsh (cy)",
"Catalan (ca)",
"Slovenian (sl)",
"Estonian (et)",
"Indonesian (id)",
"Arabic (ar)",
"Tamil (ta)",
"Latvian (lv)",
"Japanese (ja)",
]
MAPPING = {
"en": 250004,
"de": 250003,
"tr": 250023,
"fa": 250029,
"sv": 250042,
"mn": 250037,
"zh": 250025,
"cy": 250007,
"ca": 250005,
"sl": 250052,
"et": 250006,
"id": 250032,
"ar": 250001,
"ta": 250044,
"lv": 250017,
"ja": 250012,
}
iface = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type='filepath'),
gr.inputs.Dropdown(target_language),
],
outputs="text",
layout="horizontal",
theme="huggingface",
title="XLS-R 2B 22-to-16 Speech Translation",
description="A simple interface to translate from 22 input spoken languages to 16 written languages.",
article = "<p style='text-align: center'><a href='https://huggingface.co/facebook/wav2vec2-xls-r-2b-22-to-16' target='_blank'>Click to learn more about XLS-R-2B-22-16 </a> | <a href='https://arxiv.org/abs/2111.09296' target='_blank'> With ๐๏ธ from Facebook XLS-R </a></p>",
enable_queue=True,
allow_flagging=False,
)
iface.launch()
|