Spaces:
Running
Running
File size: 3,132 Bytes
7b0aaea b5b39b7 42d7bae 7b0aaea b5b39b7 42d7bae b5b39b7 42d7bae 7b0aaea 42d7bae 7b0aaea 42d7bae 7b0aaea 42d7bae b5b39b7 42d7bae b5b39b7 42d7bae b5b39b7 7b0aaea b5b39b7 7b0aaea b5b39b7 42d7bae 7b0aaea 42d7bae 7b0aaea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import streamlit as st
import requests
import pandas as pd
import matplotlib.pyplot as plt
from huggingface_hub import hf_hub_download
from io import BytesIO
st.title("Heart Arrhythmia Detection Tools (hadt)")
st.markdown("""
This is a demo of the Heart Arrhythmia Detection Tools (hadt) project.
The project is available on [GitHub](https://github.com/fabriciojm/hadt).
""")
models = {
"LSTM Multiclass": "lstm_multi_model.h5",
"CNN Multiclass": "cnn_multi_model.h5",
"PCA XGBoost Multiclass": "pca_xgboost_multi_model.pkl",
"LSTM Binary": "lstm_binary_model.h5",
"CNN Binary": "cnn_binary_model.h5",
"PCA XGBoost Binary": "pca_xgboost_binary_model.pkl",
}
beat_labels = {
"N": "Normal",
"Q": "Unknown Beat",
"S": "Supraventricular Ectopic",
"V": "Ventricular Ectopic",
"A": "Abnormal",
}
# Model selection
classification = ["Multiclass", "Binary"]
model_list = ["LSTM", "CNN", "PCA XGBoost"]
model_selected = st.selectbox("Select a Model", model_list)
classification_selected = st.selectbox("Classification type", classification)
model_name = f"{model_selected} {classification_selected}"
st.markdown("""Upload a CSV file with single heartbeat (csv with 180 points) or load from available examples
""")
# Option to upload or load a file
option = st.radio("Choose input method", ("Load example file", "Upload CSV file"))
if option == "Load example file":
# Load example files from Hugging Face dataset
example_files = ["single_N.csv", "single_Q.csv", "single_S.csv", "single_V.csv"]
example_selected = st.selectbox("Select an example file", example_files)
# Load the selected example file
file_path = hf_hub_download(repo_id='fabriciojm/ecg-examples', repo_type='dataset', filename=example_selected)
with open(file_path, 'rb') as f:
file_content = f.read()
uploaded_file = BytesIO(file_content)
uploaded_file.name = example_selected # Set a name attribute to mimic the uploaded file
df = pd.read_csv(uploaded_file)
# st.write("Loaded Data:", df)
else:
# File uploader
uploaded_file = st.file_uploader("Upload a CSV file", type="csv")
if uploaded_file is not None:
df = pd.read_csv(uploaded_file)
# st.write("Uploaded Data:", df)
# Visualize data
if 'df' in locals():
st.write("Visualized Data:")
fig, ax = plt.subplots(figsize=(10, 6))
df.iloc[0].plot(ax=ax)
st.pyplot(fig)
if st.button("Predict"):
model = models[model_name]
# Reset the file pointer to the beginning
uploaded_file.seek(0)
# Call the API with the file directly
response = requests.post(
f"https://fabriciojm-hadt-api.hf.space/predict?model_name={model}",
files={"filepath_csv": (uploaded_file.name, uploaded_file, "text/csv")}
)
if response.status_code == 200:
prediction = response.json()["prediction"]
st.write(f"Prediction using {model_name}: {beat_labels[prediction]} (class {prediction}) heartbeat")
else:
st.error(f"Error: {response.json().get('detail', 'Unknown error')}")
|