|
import os |
|
import gradio as gr |
|
|
|
from openai import OpenAI |
|
|
|
from optillm.cot_reflection import cot_reflection |
|
from optillm.rto import round_trip_optimization |
|
from optillm.z3_solver import Z3SymPySolverSystem |
|
from optillm.self_consistency import advanced_self_consistency_approach |
|
from optillm.rstar import RStar |
|
from optillm.plansearch import plansearch |
|
from optillm.leap import leap |
|
from optillm.reread import re2_approach |
|
|
|
|
|
API_KEY = os.environ.get("OPENROUTER_API_KEY") |
|
|
|
def compare_responses(message, model1, approach1, model2, approach2, system_message, max_tokens, temperature, top_p): |
|
response1 = respond(message, [], model1, approach1, system_message, max_tokens, temperature, top_p) |
|
response2 = respond(message, [], model2, approach2, system_message, max_tokens, temperature, top_p) |
|
return response1, response2 |
|
|
|
def parse_conversation(messages): |
|
system_prompt = "" |
|
conversation = [] |
|
|
|
for message in messages: |
|
role = message['role'] |
|
content = message['content'] |
|
|
|
if role == 'system': |
|
system_prompt = content |
|
elif role in ['user', 'assistant']: |
|
conversation.append(f"{role.capitalize()}: {content}") |
|
|
|
initial_query = "\n".join(conversation) |
|
return system_prompt, initial_query |
|
|
|
def respond(message, history, model, approach, system_message, max_tokens, temperature, top_p): |
|
client = OpenAI(api_key=API_KEY, base_url="https://openrouter.ai/api/v1") |
|
messages = [{"role": "system", "content": system_message}] |
|
for val in history: |
|
if val[0]: messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: messages.append({"role": "assistant", "content": val[1]}) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
if approach == "none": |
|
response = client.chat.completions.create( |
|
extra_headers={ |
|
"HTTP-Referer": "https://github.com/codelion/optillm", |
|
"X-Title": "optillm" |
|
}, |
|
model=model, |
|
messages=messages, |
|
max_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
) |
|
return response.choices[0].message.content |
|
else: |
|
system_prompt, initial_query = parse_conversation(messages) |
|
if approach == 'rto': |
|
final_response, _ = round_trip_optimization(system_prompt, initial_query, client, model) |
|
elif approach == 'z3': |
|
z3_solver = Z3SymPySolverSystem(system_prompt, client, model) |
|
final_response, _ = z3_solver.process_query(initial_query) |
|
elif approach == "self_consistency": |
|
final_response, _ = advanced_self_consistency_approach(system_prompt, initial_query, client, model) |
|
elif approach == "rstar": |
|
rstar = RStar(system_prompt, client, model) |
|
final_response, _ = rstar.solve(initial_query) |
|
elif approach == "cot_reflection": |
|
final_response, _ = cot_reflection(system_prompt, initial_query, client, model) |
|
elif approach == 'plansearch': |
|
final_response, _ = plansearch(system_prompt, initial_query, client, model)[0] |
|
elif approach == 'leap': |
|
final_response, _ = leap(system_prompt, initial_query, client, model) |
|
elif approach == 're2': |
|
final_response, _ = re2_approach(system_prompt, initial_query, client, model) |
|
|
|
return final_response |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_model_dropdown(): |
|
return gr.Dropdown( |
|
[ "meta-llama/llama-3.1-8b-instruct:free", "nousresearch/hermes-3-llama-3.1-405b:free", |
|
"mistralai/mistral-7b-instruct:free","mistralai/pixtral-12b:free", |
|
"qwen/qwen-2-7b-instruct:free", "qwen/qwen-2-vl-7b-instruct:free", "google/gemma-2-9b-it:free", "google/gemini-flash-8b-1.5-exp", |
|
"google/gemini-flash-1.5-exp", "google/gemini-pro-1.5-exp"], |
|
value="meta-llama/llama-3.1-8b-instruct:free", label="Model" |
|
) |
|
|
|
def create_approach_dropdown(): |
|
return gr.Dropdown( |
|
["none", "leap", "plansearch", "rstar", "cot_reflection", "rto", "self_consistency", "z3", "re2"], |
|
value="none", label="Approach" |
|
) |
|
|
|
html = """<iframe src="https://ghbtns.com/github-btn.html?user=codelion&repo=optillm&type=star&count=true&size=large" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> |
|
""" |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# optillm - LLM Optimization Comparison") |
|
gr.HTML(html) |
|
|
|
with gr.Row(): |
|
system_message = gr.Textbox(value="", label="System message") |
|
max_tokens = gr.Slider(minimum=1, maximum=4096, value=1024, step=1, label="Max new tokens") |
|
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") |
|
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem("Chat"): |
|
model = create_model_dropdown() |
|
approach = create_approach_dropdown() |
|
chatbot = gr.Chatbot() |
|
msg = gr.Textbox() |
|
with gr.Row(): |
|
submit = gr.Button("Submit") |
|
clear = gr.Button("Clear") |
|
|
|
def user(user_message, history): |
|
return "", history + [[user_message, None]] |
|
|
|
def bot(history, model, approach, system_message, max_tokens, temperature, top_p): |
|
user_message = history[-1][0] |
|
bot_message = respond(user_message, history[:-1], model, approach, system_message, max_tokens, temperature, top_p) |
|
history[-1][1] = bot_message |
|
return history |
|
|
|
msg.submit(user, [msg, chatbot], [msg, chatbot]).then( |
|
bot, [chatbot, model, approach, system_message, max_tokens, temperature, top_p], chatbot |
|
) |
|
submit.click(user, [msg, chatbot], [msg, chatbot]).then( |
|
bot, [chatbot, model, approach, system_message, max_tokens, temperature, top_p], chatbot |
|
) |
|
clear.click(lambda: None, None, chatbot, queue=False) |
|
|
|
with gr.TabItem("Compare"): |
|
with gr.Row(): |
|
model1 = create_model_dropdown() |
|
approach1 = create_approach_dropdown() |
|
model2 = create_model_dropdown() |
|
approach2 = create_approach_dropdown() |
|
|
|
compare_input = gr.Textbox(label="Enter your message for comparison") |
|
compare_button = gr.Button("Compare") |
|
|
|
with gr.Row(): |
|
output1 = gr.Textbox(label="Response 1") |
|
output2 = gr.Textbox(label="Response 2") |
|
|
|
compare_button.click( |
|
compare_responses, |
|
inputs=[compare_input, model1, approach1, model2, approach2, system_message, max_tokens, temperature, top_p], |
|
outputs=[output1, output2] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |