import gradio as gr from huggingface_hub import login, logout, whoami # Custom CSS for background gradient custom_css = """ body, .gradio-container { background: linear-gradient(135deg, #1e3c72, #2a5298); color: white; } .sidebar { background: rgba(255, 255, 255, 0.1) !important; border-radius: 10px; padding: 20px; margin: 10px; } .sidebar .markdown { color: white !important; } """ # Function to handle login def handle_login(token): try: # Attempt to log in with the provided token login(token=token, add_to_git_credential=False) user_info = whoami() return f"Logged in as: {user_info['name']}" except Exception as e: # Handle login failure logout() # Ensure the user is logged out if login fails return f"Login failed: {str(e)}" # Function to check if the user is logged in def is_logged_in(): try: # Check if the user is authenticated whoami() return True except: return False # Function to restrict access to the app def restricted_functionality(prompt): if not is_logged_in(): return "Please log in to use this feature." # Simulate model response (replace with actual model inference) return f"Model response to: {prompt}" # Gradio interface with gr.Blocks(css=custom_css) as demo: with gr.Sidebar(): gr.Markdown("# Inference Provider") gr.Markdown("This Space showcases the deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct model, served by the nebius API. Sign in with your Hugging Face account to use this API.") token_input = gr.Textbox(label="Hugging Face Token", type="password") login_button = gr.Button("Sign in") login_status = gr.Markdown("") # Main app functionality with gr.Column(visible=False) as main_interface: # Hide until logged in prompt = gr.Textbox(label="Your Prompt") output = gr.Textbox(label="Model Response") generate_button = gr.Button("Generate") # Load the model model_interface = gr.load("models/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", provider="nebius") # Handle login def update_interface(token): login_result = handle_login(token) if "Logged in as:" in login_result: return {main_interface: gr.update(visible=True), login_status: login_result} else: return {main_interface: gr.update(visible=False), login_status: login_result} login_button.click(update_interface, inputs=token_input, outputs=[main_interface, login_status]) # Handle text generation (restricted to logged-in users) generate_button.click(restricted_functionality, inputs=prompt, outputs=output) # Launch the app demo.launch()