app para avalição do modelo treinado com interface
Browse files- app.py +66 -55
- requirements.txt +5 -1
app.py
CHANGED
@@ -1,64 +1,75 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
import csv
|
5 |
+
from datetime import datetime
|
6 |
|
7 |
+
# Load models and tokenizers
|
8 |
+
base_model_name = "unsloth/Llama-3.2-1B-Instruct"
|
9 |
+
finetuned_model_name = "exo-is/esg-context-llama-1Bst-11M" # Replace with your model's path
|
|
|
10 |
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
12 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=torch.float32, low_cpu_mem_usage=True, device_map="cpu")
|
13 |
+
finetuned_model = AutoModelForCausalLM.from_pretrained(finetuned_model_name, torch_dtype=torch.float32, low_cpu_mem_usage=True, device_map="cpu")
|
14 |
|
15 |
+
def generate_text(model, prompt, max_new_tokens, temperature):
|
16 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
17 |
+
|
18 |
+
with torch.no_grad():
|
19 |
+
outputs = model.generate(
|
20 |
+
**inputs,
|
21 |
+
max_new_tokens=int(max_new_tokens),
|
22 |
+
temperature=temperature,
|
23 |
+
num_return_sequences=1,
|
24 |
+
do_sample=True,
|
25 |
+
)
|
26 |
+
|
27 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
|
29 |
+
def log_interaction(model, prompt, output, validation):
|
30 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
31 |
+
with open('interaction_log.csv', 'a', newline='') as file:
|
32 |
+
writer = csv.writer(file)
|
33 |
+
writer.writerow([timestamp, model, prompt, output, validation])
|
34 |
|
35 |
+
def generate_and_compare(prompt, max_new_tokens, temperature):
|
36 |
+
base_output = generate_text(base_model, prompt, max_new_tokens, temperature)
|
37 |
+
finetuned_output = generate_text(finetuned_model, prompt, max_new_tokens, temperature)
|
38 |
+
return base_output, finetuned_output
|
39 |
|
40 |
+
def evaluate(model, output, score):
|
41 |
+
log_interaction(model, gr.get_state('last_prompt'), output, score)
|
42 |
+
return f"Avaliação registrada: {score}"
|
43 |
|
44 |
+
with gr.Blocks() as demo:
|
45 |
+
gr.Markdown("# Comparação de Modelos: Llama-3.2-1B-Instruct vs. Modelo Fine-tuned para Sustentabilidade")
|
46 |
+
|
47 |
+
with gr.Row():
|
48 |
+
prompt = gr.Textbox(lines=5, label="Insira seu prompt aqui")
|
49 |
+
max_new_tokens = gr.Slider(50, 500, value=200, step=1, label="Máximo de Novos Tokens")
|
50 |
+
temperature = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperatura")
|
51 |
+
|
52 |
+
generate_btn = gr.Button("Gerar")
|
53 |
+
|
54 |
+
with gr.Row():
|
55 |
+
with gr.Column():
|
56 |
+
base_output = gr.Textbox(label="Saída do Modelo Base", lines=10)
|
57 |
+
base_rating = gr.Radio(["1", "2", "3", "4", "5"], label="Avalie a resposta do Modelo Base")
|
58 |
+
base_submit = gr.Button("Enviar Avaliação (Base)")
|
59 |
+
|
60 |
+
with gr.Column():
|
61 |
+
finetuned_output = gr.Textbox(label="Saída do Modelo Fine-tuned", lines=10)
|
62 |
+
finetuned_rating = gr.Radio(["1", "2", "3", "4", "5"], label="Avalie a resposta do Modelo Fine-tuned")
|
63 |
+
finetuned_submit = gr.Button("Enviar Avaliação (Fine-tuned)")
|
64 |
+
|
65 |
+
base_feedback = gr.Textbox(label="Feedback da Avaliação (Base)")
|
66 |
+
finetuned_feedback = gr.Textbox(label="Feedback da Avaliação (Fine-tuned)")
|
67 |
+
|
68 |
+
generate_btn.click(generate_and_compare, inputs=[prompt, max_new_tokens, temperature], outputs=[base_output, finetuned_output])
|
69 |
+
base_submit.click(evaluate, inputs=["Base", base_output, base_rating], outputs=base_feedback)
|
70 |
+
finetuned_submit.click(evaluate, inputs=["Fine-tuned", finetuned_output, finetuned_rating], outputs=finetuned_feedback)
|
71 |
+
|
72 |
+
demo.load(lambda: gr.update(value=""), outputs=[prompt])
|
73 |
+
prompt.change(lambda x: gr.set_state(last_prompt=x), inputs=[prompt])
|
74 |
|
75 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1 +1,5 @@
|
|
1 |
-
huggingface_hub==0.25.2
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.25.2
|
2 |
+
|
3 |
+
gradio
|
4 |
+
transformers
|
5 |
+
torch
|