# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_torch_available from .test_configuration_common import ConfigTester from .test_modeling_common import ModelTesterMixin, ids_tensor from .utils import CACHE_DIR, require_torch, slow, torch_device if is_torch_available(): from transformers import ( OpenAIGPTConfig, OpenAIGPTModel, OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, ) @require_torch class OpenAIGPTModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel) if is_torch_available() else () ) class OpenAIGPTModelTester(object): def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = OpenAIGPTConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, # intermediate_size=self.intermediate_size, # hidden_act=self.hidden_act, # hidden_dropout_prob=self.hidden_dropout_prob, # attention_probs_dropout_prob=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, n_ctx=self.max_position_embeddings # type_vocab_size=self.type_vocab_size, # initializer_range=self.initializer_range ) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels def check_loss_output(self, result): self.parent.assertListEqual(list(result["loss"].size()), []) def create_and_check_openai_gpt_model(self, config, input_ids, head_mask, token_type_ids, *args): model = OpenAIGPTModel(config=config) model.to(torch_device) model.eval() model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask) model(input_ids, token_type_ids=token_type_ids) (sequence_output,) = model(input_ids) result = {"sequence_output": sequence_output} self.parent.assertListEqual( list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size] ) def create_and_check_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args): model = OpenAIGPTLMHeadModel(config) model.to(torch_device) model.eval() loss, lm_logits = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) result = {"loss": loss, "lm_logits": lm_logits} self.parent.assertListEqual(list(result["loss"].size()), []) self.parent.assertListEqual( list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size] ) def create_and_check_double_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args): model = OpenAIGPTDoubleHeadsModel(config) model.to(torch_device) model.eval() loss, lm_logits, mc_logits = model(input_ids, token_type_ids=token_type_ids, lm_labels=input_ids) result = {"loss": loss, "lm_logits": lm_logits} self.parent.assertListEqual(list(result["loss"].size()), []) self.parent.assertListEqual( list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size] ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict def setUp(self): self.model_tester = OpenAIGPTModelTest.OpenAIGPTModelTester(self) self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_openai_gpt_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs) def test_openai_gpt_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*config_and_inputs) def test_openai_gpt_double_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in list(OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: model = OpenAIGPTModel.from_pretrained(model_name, cache_dir=CACHE_DIR) self.assertIsNotNone(model)