# coding=utf-8 # Copyright 2019 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import logging import os.path import random import tempfile import unittest from transformers import is_torch_available from .utils import require_torch, slow, torch_device if is_torch_available(): import torch import numpy as np from transformers import ( AdaptiveEmbedding, PretrainedConfig, PreTrainedModel, BertModel, BertConfig, BERT_PRETRAINED_MODEL_ARCHIVE_MAP, ) def _config_zero_init(config): configs_no_init = copy.deepcopy(config) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key: setattr(configs_no_init, key, 0.0) return configs_no_init @require_torch class ModelTesterMixin: model_tester = None all_model_classes = () test_torchscript = True test_pruning = True test_resize_embeddings = True test_head_masking = True is_encoder_decoder = False def test_save_load(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**inputs_dict) out_2 = outputs[0].numpy() out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname) model.to(torch_device) with torch.no_grad(): after_outputs = model(**inputs_dict) # Make sure we don't have nans out_1 = after_outputs[0].cpu().numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( param.data.mean().item(), [0.0, 1.0], msg="Parameter {} of model {} seems not properly initialized".format(name, model_class), ) def test_determinism(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): first = model(**inputs_dict)[0] second = model(**inputs_dict)[0] out_1 = first.cpu().numpy() out_2 = second.cpu().numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() decoder_seq_length = ( self.model_tester.decoder_seq_length if hasattr(self.model_tester, "decoder_seq_length") else self.model_tester.seq_length ) encoder_seq_length = ( self.model_tester.encoder_seq_length if hasattr(self.model_tester, "encoder_seq_length") else self.model_tester.seq_length ) decoder_key_length = ( self.model_tester.key_length if hasattr(self.model_tester, "key_length") else decoder_seq_length ) encoder_key_length = ( self.model_tester.key_length if hasattr(self.model_tester, "key_length") else encoder_seq_length ) for model_class in self.all_model_classes: config.output_attentions = True config.output_hidden_states = False model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**inputs_dict) attentions = outputs[-1] self.assertEqual(model.config.output_attentions, True) self.assertEqual(model.config.output_hidden_states, False) self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) out_len = len(outputs) if self.is_encoder_decoder: self.assertEqual(out_len % 2, 0) decoder_attentions = outputs[(out_len // 2) - 1] self.assertEqual(model.config.output_attentions, True) self.assertEqual(model.config.output_hidden_states, False) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # Check attention is always last and order is fine config.output_attentions = True config.output_hidden_states = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**inputs_dict) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs)) self.assertEqual(model.config.output_attentions, True) self.assertEqual(model.config.output_hidden_states, True) self_attentions = outputs[-1] self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) def test_torchscript(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() self._create_and_check_torchscript(config, inputs_dict) def test_torchscript_output_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_attentions = True self._create_and_check_torchscript(config, inputs_dict) def test_torchscript_output_hidden_state(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True self._create_and_check_torchscript(config, inputs_dict) def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() inputs = inputs_dict["input_ids"] # Let's keep only input_ids try: traced_gpt2 = torch.jit.trace(model, inputs) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_gpt2, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) models_equal = True for layer_name, p1 in model_state_dict.items(): p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_headmasking(self): if not self.test_head_masking: return global_rng.seed(42) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() global_rng.seed() config.output_attentions = True config.output_hidden_states = True configs_no_init = _config_zero_init(config) # To be sure we have no Nan for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() # Prepare head_mask # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior) head_mask = torch.ones( self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads, device=torch_device ) head_mask[0, 0] = 0 head_mask[-1, :-1] = 0 head_mask.requires_grad_(requires_grad=True) inputs = inputs_dict.copy() inputs["head_mask"] = head_mask outputs = model(**inputs) # Test that we can get a gradient back for importance score computation output = sum(t.sum() for t in outputs[0]) output = output.sum() output.backward() multihead_outputs = head_mask.grad attentions = outputs[-1] # Remove Nan for t in attentions: self.assertLess( torch.sum(torch.isnan(t)), t.numel() / 4 ) # Check we don't have more than 25% nans (arbitrary) attentions = [ t.masked_fill(torch.isnan(t), 0.0) for t in attentions ] # remove them (the test is less complete) self.assertIsNotNone(multihead_outputs) self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers) self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0) self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0) self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0) self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0) self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0) def test_head_pruning(self): if not self.test_pruning: return for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if "head_mask" in inputs_dict: del inputs_dict["head_mask"] config.output_attentions = True config.output_hidden_states = False model = model_class(config=config) model.to(torch_device) model.eval() heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)), -1: [0]} model.prune_heads(heads_to_prune) with torch.no_grad(): outputs = model(**inputs_dict) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], 1) self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads) self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1) def test_head_pruning_save_load_from_pretrained(self): if not self.test_pruning: return for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if "head_mask" in inputs_dict: del inputs_dict["head_mask"] config.output_attentions = True config.output_hidden_states = False model = model_class(config=config) model.to(torch_device) model.eval() heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)), -1: [0]} model.prune_heads(heads_to_prune) with tempfile.TemporaryDirectory() as temp_dir_name: model.save_pretrained(temp_dir_name) model = model_class.from_pretrained(temp_dir_name) model.to(torch_device) with torch.no_grad(): outputs = model(**inputs_dict) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], 1) self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads) self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1) def test_head_pruning_save_load_from_config_init(self): if not self.test_pruning: return for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if "head_mask" in inputs_dict: del inputs_dict["head_mask"] config.output_attentions = True config.output_hidden_states = False heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)), -1: [0]} config.pruned_heads = heads_to_prune model = model_class(config=config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**inputs_dict) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], 1) self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads) self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1) def test_head_pruning_integration(self): if not self.test_pruning: return for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if "head_mask" in inputs_dict: del inputs_dict["head_mask"] config.output_attentions = True config.output_hidden_states = False heads_to_prune = {0: [0], 1: [1, 2]} config.pruned_heads = heads_to_prune model = model_class(config=config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**inputs_dict) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1) self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2) self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads) self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads) with tempfile.TemporaryDirectory() as temp_dir_name: model.save_pretrained(temp_dir_name) model = model_class.from_pretrained(temp_dir_name) model.to(torch_device) with torch.no_grad(): outputs = model(**inputs_dict) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1) self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2) self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads) self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads) heads_to_prune = {0: [0], 2: [1, 2]} model.prune_heads(heads_to_prune) with torch.no_grad(): outputs = model(**inputs_dict) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1) self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2) self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2) self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads) self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]}) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: config.output_hidden_states = True config.output_attentions = False model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**inputs_dict) hidden_states = outputs[-1] self.assertEqual(model.config.output_attentions, False) self.assertEqual(model.config.output_hidden_states, True) self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1) self.assertListEqual( list(hidden_states[0].shape[-2:]), [ self.model_tester.encoder_seq_length if hasattr(self.model_tester, "encoder_seq_length") else self.model_tester.seq_length, self.model_tester.hidden_size, ], ) def test_resize_tokens_embeddings(self): original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: return for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config) model_vocab_size = config.vocab_size # Retrieve the embeddings and clone theme model_embed = model.resize_token_embeddings(model_vocab_size) cloned_embeddings = model_embed.weight.clone() # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.vocab_size, model_vocab_size + 10) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**inputs_dict) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) # Input ids should be clamped to the maximum size of the vocabulary inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1) model(**inputs_dict) # Check that adding and removing tokens has not modified the first part of the embedding matrix. models_equal = True for p1, p2 in zip(cloned_embeddings, model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_model_common_attributes(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding)) model.set_input_embeddings(torch.nn.Embedding(10, 10)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, torch.nn.Linear)) def test_tie_model_weights(self): if not self.test_torchscript: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_same_values(layer_1, layer_2): equal = True for p1, p2 in zip(layer_1.weight, layer_2.weight): if p1.data.ne(p2.data).sum() > 0: equal = False return equal for model_class in self.all_model_classes: config.torchscript = True model_not_tied = model_class(config) if model_not_tied.get_output_embeddings() is None: continue params_not_tied = list(model_not_tied.parameters()) config_tied = copy.deepcopy(config) config_tied.torchscript = False model_tied = model_class(config_tied) params_tied = list(model_tied.parameters()) # Check that the embedding layer and decoding layer are the same in size and in value self.assertGreater(len(params_not_tied), len(params_tied)) # self.assertTrue(check_same_values(embeddings, decoding)) # # Check that after modification, they remain the same. # embeddings.weight.data.div_(2) # # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(embeddings.weight.shape, decoding.weight.shape) # self.assertTrue(check_same_values(embeddings, decoding)) # # Check that after modification, they remain the same. # decoding.weight.data.div_(4) # # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(embeddings.weight.shape, decoding.weight.shape) # self.assertTrue(check_same_values(embeddings, decoding)) # Check that after resize they remain tied. model_tied.resize_token_embeddings(config.vocab_size + 10) params_tied_2 = list(model_tied.parameters()) self.assertGreater(len(params_not_tied), len(params_tied)) self.assertEqual(len(params_tied_2), len(params_tied)) # decoding.weight.data.mul_(20) # # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape) # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head)) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.is_encoder_decoder: input_ids = inputs_dict["input_ids"] del inputs_dict["input_ids"] else: encoder_input_ids = inputs_dict["encoder_input_ids"] decoder_input_ids = inputs_dict["decoder_input_ids"] del inputs_dict["encoder_input_ids"] del inputs_dict["decoder_input_ids"] for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs_dict["inputs_embeds"] = wte(input_ids) else: inputs_dict["encoder_inputs_embeds"] = wte(encoder_input_ids) inputs_dict["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs_dict) global_rng = random.Random() def ids_tensor(shape, vocab_size, rng=None, name=None): """Creates a random int32 tensor of the shape within the vocab size.""" if rng is None: rng = global_rng total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.randint(0, vocab_size - 1)) return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous() def floats_tensor(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor of the shape within the vocab size.""" if rng is None: rng = global_rng total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.random() * scale) return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous() @require_torch class ModelUtilsTest(unittest.TestCase): @slow def test_model_from_pretrained(self): logging.basicConfig(level=logging.INFO) for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: config = BertConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, PretrainedConfig) model = BertModel.from_pretrained(model_name) model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, PreTrainedModel) for value in loading_info.values(): self.assertEqual(len(value), 0) config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True) model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True) self.assertEqual(model.config.output_attentions, True) self.assertEqual(model.config.output_hidden_states, True) self.assertEqual(model.config, config)