# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest from transformers import is_torch_available from .utils import require_torch if is_torch_available(): import torch from transformers import ( AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, ) def unwrap_schedule(scheduler, num_steps=10): lrs = [] for _ in range(num_steps): scheduler.step() lrs.append(scheduler.get_lr()) return lrs def unwrap_and_save_reload_schedule(scheduler, num_steps=10): lrs = [] for step in range(num_steps): scheduler.step() lrs.append(scheduler.get_lr()) if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: file_name = os.path.join(tmpdirname, "schedule.bin") torch.save(scheduler.state_dict(), file_name) state_dict = torch.load(file_name) scheduler.load_state_dict(state_dict) return lrs @require_torch class OptimizationTest(unittest.TestCase): def assertListAlmostEqual(self, list1, list2, tol): self.assertEqual(len(list1), len(list2)) for a, b in zip(list1, list2): self.assertAlmostEqual(a, b, delta=tol) def test_adam_w(self): w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True) target = torch.tensor([0.4, 0.2, -0.5]) criterion = torch.nn.MSELoss() # No warmup, constant schedule, no gradient clipping optimizer = AdamW(params=[w], lr=2e-1, weight_decay=0.0) for _ in range(100): loss = criterion(w, target) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2) @require_torch class ScheduleInitTest(unittest.TestCase): m = torch.nn.Linear(50, 50) if is_torch_available() else None optimizer = AdamW(m.parameters(), lr=10.0) if is_torch_available() else None num_steps = 10 def assertListAlmostEqual(self, list1, list2, tol): self.assertEqual(len(list1), len(list2)) for a, b in zip(list1, list2): self.assertAlmostEqual(a, b, delta=tol) def test_constant_scheduler(self): scheduler = get_constant_schedule(self.optimizer) lrs = unwrap_schedule(scheduler, self.num_steps) expected_learning_rates = [10.0] * self.num_steps self.assertEqual(len(lrs[0]), 1) self.assertListEqual([l[0] for l in lrs], expected_learning_rates) scheduler = get_constant_schedule(self.optimizer) lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps) self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2]) def test_warmup_constant_scheduler(self): scheduler = get_constant_schedule_with_warmup(self.optimizer, num_warmup_steps=4) lrs = unwrap_schedule(scheduler, self.num_steps) expected_learning_rates = [2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0] self.assertEqual(len(lrs[0]), 1) self.assertListEqual([l[0] for l in lrs], expected_learning_rates) scheduler = get_constant_schedule_with_warmup(self.optimizer, num_warmup_steps=4) lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps) self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2]) def test_warmup_linear_scheduler(self): scheduler = get_linear_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10) lrs = unwrap_schedule(scheduler, self.num_steps) expected_learning_rates = [5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25, 0.0] self.assertEqual(len(lrs[0]), 1) self.assertListEqual([l[0] for l in lrs], expected_learning_rates) scheduler = get_linear_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10) lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps) self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2]) def test_warmup_cosine_scheduler(self): scheduler = get_cosine_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10) lrs = unwrap_schedule(scheduler, self.num_steps) expected_learning_rates = [5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38, 0.0] self.assertEqual(len(lrs[0]), 1) self.assertListAlmostEqual([l[0] for l in lrs], expected_learning_rates, tol=1e-2) scheduler = get_cosine_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10) lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps) self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2]) def test_warmup_cosine_hard_restart_scheduler(self): scheduler = get_cosine_with_hard_restarts_schedule_with_warmup( self.optimizer, num_warmup_steps=2, num_cycles=2, num_training_steps=10 ) lrs = unwrap_schedule(scheduler, self.num_steps) expected_learning_rates = [5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46, 0.0] self.assertEqual(len(lrs[0]), 1) self.assertListAlmostEqual([l[0] for l in lrs], expected_learning_rates, tol=1e-2) scheduler = get_cosine_with_hard_restarts_schedule_with_warmup( self.optimizer, num_warmup_steps=2, num_cycles=2, num_training_steps=10 ) lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps) self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])