# coding=utf-8 # Copyright 2019 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os import random import tempfile from transformers import is_tf_available, is_torch_available from .utils import require_tf if is_tf_available(): import tensorflow as tf import numpy as np # from transformers.modeling_bert import BertModel, BertConfig, BERT_PRETRAINED_MODEL_ARCHIVE_MAP def _config_zero_init(config): configs_no_init = copy.deepcopy(config) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key: setattr(configs_no_init, key, 0.0) return configs_no_init @require_tf class TFModelTesterMixin: model_tester = None all_model_classes = () test_torchscript = True test_pruning = True test_resize_embeddings = True is_encoder_decoder = False def test_initialization(self): pass # config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # configs_no_init = _config_zero_init(config) # for model_class in self.all_model_classes: # model = model_class(config=configs_no_init) # for name, param in model.named_parameters(): # if param.requires_grad: # self.assertIn(param.data.mean().item(), [0.0, 1.0], # msg="Parameter {} of model {} seems not properly initialized".format(name, model_class)) def test_save_load(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) outputs = model(inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname) after_outputs = model(inputs_dict) # Make sure we don't have nans out_1 = after_outputs[0].numpy() out_2 = outputs[0].numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def test_pt_tf_model_equivalence(self): if not is_torch_available(): return import torch import transformers config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beggining pt_model_class = getattr(transformers, pt_model_class_name) config.output_hidden_states = True tf_model = model_class(config) pt_model = pt_model_class(config) # Check we can load pt model in tf and vice-versa with model => model functions tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=inputs_dict) pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model) # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences pt_model.eval() pt_inputs_dict = dict( (name, torch.from_numpy(key.numpy()).to(torch.long)) for name, key in inputs_dict.items() ) with torch.no_grad(): pto = pt_model(**pt_inputs_dict) tfo = tf_model(inputs_dict, training=False) tf_hidden_states = tfo[0].numpy() pt_hidden_states = pto[0].numpy() tf_hidden_states[np.isnan(tf_hidden_states)] = 0 pt_hidden_states[np.isnan(pt_hidden_states)] = 0 max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states)) # Debug info (remove when fixed) if max_diff >= 2e-2: print("===") print(model_class) print(config) print(inputs_dict) print(pt_inputs_dict) self.assertLessEqual(max_diff, 2e-2) # Check we can load pt model in tf and vice-versa with checkpoint => model functions with tempfile.TemporaryDirectory() as tmpdirname: pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin") torch.save(pt_model.state_dict(), pt_checkpoint_path) tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path) tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5") tf_model.save_weights(tf_checkpoint_path) pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path) # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences pt_model.eval() pt_inputs_dict = dict( (name, torch.from_numpy(key.numpy()).to(torch.long)) for name, key in inputs_dict.items() ) with torch.no_grad(): pto = pt_model(**pt_inputs_dict) tfo = tf_model(inputs_dict) tfo = tfo[0].numpy() pto = pto[0].numpy() tfo[np.isnan(tfo)] = 0 pto[np.isnan(pto)] = 0 max_diff = np.amax(np.abs(tfo - pto)) self.assertLessEqual(max_diff, 2e-2) def test_compile_tf_model(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if self.is_encoder_decoder: input_ids = { "decoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="decoder_input_ids", dtype="int32"), "encoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="encoder_input_ids", dtype="int32"), } else: input_ids = tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32") optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy") for model_class in self.all_model_classes: # Prepare our model model = model_class(config) # Let's load it from the disk to be sure we can use pretrained weights with tempfile.TemporaryDirectory() as tmpdirname: outputs = model(inputs_dict) # build the model model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname) outputs_dict = model(input_ids) hidden_states = outputs_dict[0] # Add a dense layer on top to test intetgration with other keras modules outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states) # Compile extended model extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs]) extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric]) def test_keyword_and_dict_args(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) outputs_dict = model(inputs_dict) inputs_keywords = copy.deepcopy(inputs_dict) input_ids = inputs_keywords.pop("input_ids" if not self.is_encoder_decoder else "decoder_input_ids", None) outputs_keywords = model(input_ids, **inputs_keywords) output_dict = outputs_dict[0].numpy() output_keywords = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() decoder_seq_length = ( self.model_tester.decoder_seq_length if hasattr(self.model_tester, "decoder_seq_length") else self.model_tester.seq_length ) encoder_seq_length = ( self.model_tester.encoder_seq_length if hasattr(self.model_tester, "encoder_seq_length") else self.model_tester.seq_length ) decoder_key_length = ( self.model_tester.key_length if hasattr(self.model_tester, "key_length") else decoder_seq_length ) encoder_key_length = ( self.model_tester.key_length if hasattr(self.model_tester, "key_length") else encoder_seq_length ) for model_class in self.all_model_classes: config.output_attentions = True config.output_hidden_states = False model = model_class(config) outputs = model(inputs_dict) attentions = [t.numpy() for t in outputs[-1]] self.assertEqual(model.config.output_attentions, True) self.assertEqual(model.config.output_hidden_states, False) self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) out_len = len(outputs) if self.is_encoder_decoder: self.assertEqual(out_len % 2, 0) decoder_attentions = outputs[(out_len // 2) - 1] self.assertEqual(model.config.output_attentions, True) self.assertEqual(model.config.output_hidden_states, False) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # Check attention is always last and order is fine config.output_attentions = True config.output_hidden_states = True model = model_class(config) outputs = model(inputs_dict) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs)) self.assertEqual(model.config.output_attentions, True) self.assertEqual(model.config.output_hidden_states, True) attentions = [t.numpy() for t in outputs[-1]] self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: config.output_hidden_states = True config.output_attentions = False model = model_class(config) outputs = model(inputs_dict) hidden_states = [t.numpy() for t in outputs[-1]] self.assertEqual(model.config.output_attentions, False) self.assertEqual(model.config.output_hidden_states, True) self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size] ) def test_model_common_attributes(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) x = model.get_output_embeddings() assert x is None or isinstance(x, tf.keras.layers.Layer) def test_determinism(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) first, second = model(inputs_dict, training=False)[0], model(inputs_dict, training=False)[0] out_1 = first.numpy() out_2 = second.numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def _get_embeds(self, wte, input_ids): # ^^ In our TF models, the input_embeddings can take slightly different forms, # so we try a few of them. # We used to fall back to just synthetically creating a dummy tensor of ones: try: x = wte(input_ids, mode="embedding") except Exception: try: x = wte([input_ids], mode="embedding") except Exception: try: x = wte([input_ids, None, None, None], mode="embedding") except Exception: if hasattr(self.model_tester, "embedding_size"): x = tf.ones(input_ids.shape + [self.model_tester.embedding_size], dtype=tf.dtypes.float32) else: x = tf.ones(input_ids.shape + [self.model_tester.hidden_size], dtype=tf.dtypes.float32) return x def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.is_encoder_decoder: input_ids = inputs_dict["input_ids"] del inputs_dict["input_ids"] else: encoder_input_ids = inputs_dict["encoder_input_ids"] decoder_input_ids = inputs_dict["decoder_input_ids"] del inputs_dict["encoder_input_ids"] del inputs_dict["decoder_input_ids"] for model_class in self.all_model_classes: model = model_class(config) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs_dict["inputs_embeds"] = self._get_embeds(wte, input_ids) else: inputs_dict["encoder_inputs_embeds"] = self._get_embeds(wte, encoder_input_ids) inputs_dict["decoder_inputs_embeds"] = self._get_embeds(wte, decoder_input_ids) model(inputs_dict) def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None): """Creates a random int32 tensor of the shape within the vocab size.""" if rng is None: rng = random.Random() total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.randint(0, vocab_size - 1)) output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32) return output