import unittest from transformers import is_tf_available from .utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import create_optimizer, GradientAccumulator @require_tf class OptimizationFTest(unittest.TestCase): def assertListAlmostEqual(self, list1, list2, tol): self.assertEqual(len(list1), len(list2)) for a, b in zip(list1, list2): self.assertAlmostEqual(a, b, delta=tol) def testGradientAccumulator(self): accumulator = GradientAccumulator() accumulator([tf.constant([1.0, 2.0])]) accumulator([tf.constant([-2.0, 1.0])]) accumulator([tf.constant([-1.0, 2.0])]) with self.assertRaises(ValueError): accumulator([tf.constant([1.0, 1.0]), tf.constant([2.0, 2.0])]) self.assertEqual(accumulator.step, 3) self.assertEqual(len(accumulator.gradients), 1) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [-2.0, 5.0], tol=1e-2) accumulator.reset() self.assertEqual(accumulator.step, 0) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [0.0, 0.0], tol=1e-2) def testGradientAccumulatorDistributionStrategy(self): context._context = None ops.enable_eager_execution_internal() physical_devices = tf.config.experimental.list_physical_devices("CPU") tf.config.experimental.set_virtual_device_configuration( physical_devices[0], [tf.config.experimental.VirtualDeviceConfiguration(), tf.config.experimental.VirtualDeviceConfiguration()], ) devices = tf.config.experimental.list_logical_devices(device_type="CPU") strategy = tf.distribute.MirroredStrategy(devices=[device.name for device in devices]) with strategy.scope(): accumulator = GradientAccumulator() variable = tf.Variable([4.0, 3.0]) optimizer = create_optimizer(5e-5, 10, 5) gradient_placeholder = tf.Variable([0.0, 0.0], trainable=False) def accumulate_on_replica(gradient): accumulator([gradient]) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients, [variable])), 1.0) @tf.function def accumulate(grad1, grad2): with strategy.scope(): gradient_placeholder.values[0].assign(grad1) gradient_placeholder.values[1].assign(grad2) strategy.experimental_run_v2(accumulate_on_replica, args=(gradient_placeholder,)) @tf.function def apply_grad(): with strategy.scope(): strategy.experimental_run_v2(apply_on_replica) accumulate([1.0, 2.0], [-1.0, 1.0]) accumulate([3.0, -1.0], [-1.0, -1.0]) accumulate([-2.0, 2.0], [3.0, -2.0]) self.assertEqual(accumulator.step, 3) self.assertListAlmostEqual(accumulator._gradients[0].values[0].value().numpy().tolist(), [2.0, 3.0], tol=1e-2) self.assertListAlmostEqual(accumulator._gradients[0].values[1].value().numpy().tolist(), [1.0, -2.0], tol=1e-2) apply_grad() self.assertListAlmostEqual(variable.value().numpy().tolist(), [4.0, 3.0], tol=1e-2) accumulator.reset() self.assertEqual(accumulator.step, 0) self.assertListAlmostEqual(accumulator._gradients[0].values[0].value().numpy().tolist(), [0.0, 0.0], tol=1e-2) self.assertListAlmostEqual(accumulator._gradients[0].values[1].value().numpy().tolist(), [0.0, 0.0], tol=1e-2)