# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import unittest from transformers import is_tf_available from .utils import DUMMY_UNKWOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, require_tf, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, TFAutoModel, TFBertModel, TFAutoModelForPreTraining, TFBertForPreTraining, TFAutoModelWithLMHead, TFBertForMaskedLM, TFRobertaForMaskedLM, TFAutoModelForSequenceClassification, TFBertForSequenceClassification, TFAutoModelForQuestionAnswering, TFBertForQuestionAnswering, ) @require_tf class TFAutoModelTest(unittest.TestCase): @slow def test_model_from_pretrained(self): import h5py self.assertTrue(h5py.version.hdf5_version.startswith("1.10")) logging.basicConfig(level=logging.INFO) # for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: for model_name in ["bert-base-uncased"]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModel.from_pretrained(model_name) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertModel) @slow def test_model_for_pretraining_from_pretrained(self): import h5py self.assertTrue(h5py.version.hdf5_version.startswith("1.10")) logging.basicConfig(level=logging.INFO) # for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: for model_name in ["bert-base-uncased"]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelForPreTraining.from_pretrained(model_name) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForPreTraining) @slow def test_lmhead_model_from_pretrained(self): logging.basicConfig(level=logging.INFO) # for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: for model_name in ["bert-base-uncased"]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelWithLMHead.from_pretrained(model_name) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForMaskedLM) @slow def test_sequence_classification_model_from_pretrained(self): logging.basicConfig(level=logging.INFO) # for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: for model_name in ["bert-base-uncased"]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelForSequenceClassification.from_pretrained(model_name) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForSequenceClassification) @slow def test_question_answering_model_from_pretrained(self): logging.basicConfig(level=logging.INFO) # for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: for model_name in ["bert-base-uncased"]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelForQuestionAnswering.from_pretrained(model_name) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForQuestionAnswering) def test_from_pretrained_identifier(self): logging.basicConfig(level=logging.INFO) model = TFAutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER) self.assertIsInstance(model, TFBertForMaskedLM) self.assertEqual(model.num_parameters(), 14830) self.assertEqual(model.num_parameters(only_trainable=True), 14830) def test_from_identifier_from_model_type(self): logging.basicConfig(level=logging.INFO) model = TFAutoModelWithLMHead.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER) self.assertIsInstance(model, TFRobertaForMaskedLM) self.assertEqual(model.num_parameters(), 14830) self.assertEqual(model.num_parameters(only_trainable=True), 14830)