# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import unittest from transformers import is_torch_available from .utils import DUMMY_UNKWOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, require_torch, slow if is_torch_available(): from transformers import ( AutoConfig, BertConfig, AutoModel, BertModel, AutoModelForPreTraining, BertForPreTraining, AutoModelWithLMHead, BertForMaskedLM, RobertaForMaskedLM, AutoModelForSequenceClassification, BertForSequenceClassification, AutoModelForQuestionAnswering, BertForQuestionAnswering, ) from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP from transformers.modeling_auto import ( MODEL_MAPPING, MODEL_FOR_PRETRAINING_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, ) @require_torch class AutoModelTest(unittest.TestCase): @slow def test_model_from_pretrained(self): logging.basicConfig(level=logging.INFO) for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = AutoModel.from_pretrained(model_name) model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertModel) for value in loading_info.values(): self.assertEqual(len(value), 0) @slow def test_model_for_pretraining_from_pretrained(self): logging.basicConfig(level=logging.INFO) for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = AutoModelForPreTraining.from_pretrained(model_name) model, loading_info = AutoModelForPreTraining.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForPreTraining) for value in loading_info.values(): self.assertEqual(len(value), 0) @slow def test_lmhead_model_from_pretrained(self): logging.basicConfig(level=logging.INFO) for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = AutoModelWithLMHead.from_pretrained(model_name) model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForMaskedLM) @slow def test_sequence_classification_model_from_pretrained(self): logging.basicConfig(level=logging.INFO) for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = AutoModelForSequenceClassification.from_pretrained(model_name) model, loading_info = AutoModelForSequenceClassification.from_pretrained( model_name, output_loading_info=True ) self.assertIsNotNone(model) self.assertIsInstance(model, BertForSequenceClassification) # @slow def test_question_answering_model_from_pretrained(self): logging.basicConfig(level=logging.INFO) for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = AutoModelForQuestionAnswering.from_pretrained(model_name) model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForQuestionAnswering) def test_from_pretrained_identifier(self): logging.basicConfig(level=logging.INFO) model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER) self.assertIsInstance(model, BertForMaskedLM) self.assertEqual(model.num_parameters(), 14830) self.assertEqual(model.num_parameters(only_trainable=True), 14830) def test_from_identifier_from_model_type(self): logging.basicConfig(level=logging.INFO) model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER) self.assertIsInstance(model, RobertaForMaskedLM) self.assertEqual(model.num_parameters(), 14830) self.assertEqual(model.num_parameters(only_trainable=True), 14830) def test_parents_and_children_in_mappings(self): # Test that the children are placed before the parents in the mappings, as the `instanceof` will be triggered # by the parents and will return the wrong configuration type when using auto models mappings = ( MODEL_MAPPING, MODEL_FOR_PRETRAINING_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, ) for mapping in mappings: mapping = tuple(mapping.items()) for index, (child_config, child_model) in enumerate(mapping[1:]): for parent_config, parent_model in mapping[: index + 1]: with self.subTest( msg="Testing if {} is child of {}".format(child_config.__name__, parent_config.__name__) ): self.assertFalse(issubclass(child_config, parent_config)) self.assertFalse(issubclass(child_model, parent_model))