bhoov commited on
Commit
803223f
·
1 Parent(s): bc4005a

Remove old files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. server/transformers/CONTRIBUTING.md +0 -262
  2. server/transformers/LICENSE +0 -202
  3. server/transformers/MANIFEST.in +0 -1
  4. server/transformers/Makefile +0 -24
  5. server/transformers/README.md +0 -676
  6. server/transformers/deploy_multi_version_doc.sh +0 -23
  7. server/transformers/docker/Dockerfile +0 -7
  8. server/transformers/docs/Makefile +0 -19
  9. server/transformers/docs/README.md +0 -67
  10. server/transformers/docs/source/_static/css/Calibre-Light.ttf +0 -0
  11. server/transformers/docs/source/_static/css/Calibre-Medium.otf +0 -0
  12. server/transformers/docs/source/_static/css/Calibre-Regular.otf +0 -0
  13. server/transformers/docs/source/_static/css/Calibre-Thin.otf +0 -0
  14. server/transformers/docs/source/_static/css/code-snippets.css +0 -12
  15. server/transformers/docs/source/_static/css/huggingface.css +0 -196
  16. server/transformers/docs/source/_static/js/custom.js +0 -79
  17. server/transformers/docs/source/_static/js/huggingface_logo.svg +0 -47
  18. server/transformers/docs/source/benchmarks.md +0 -54
  19. server/transformers/docs/source/bertology.rst +0 -18
  20. server/transformers/docs/source/conf.py +0 -188
  21. server/transformers/docs/source/converting_tensorflow_models.rst +0 -137
  22. server/transformers/docs/source/examples.md +0 -801
  23. server/transformers/docs/source/imgs/transformers_logo_name.png +0 -0
  24. server/transformers/docs/source/imgs/warmup_constant_schedule.png +0 -0
  25. server/transformers/docs/source/imgs/warmup_cosine_hard_restarts_schedule.png +0 -0
  26. server/transformers/docs/source/imgs/warmup_cosine_schedule.png +0 -0
  27. server/transformers/docs/source/imgs/warmup_cosine_warm_restarts_schedule.png +0 -0
  28. server/transformers/docs/source/imgs/warmup_linear_schedule.png +0 -0
  29. server/transformers/docs/source/index.rst +0 -98
  30. server/transformers/docs/source/installation.md +0 -51
  31. server/transformers/docs/source/main_classes/configuration.rst +0 -10
  32. server/transformers/docs/source/main_classes/model.rst +0 -21
  33. server/transformers/docs/source/main_classes/optimizer_schedules.rst +0 -75
  34. server/transformers/docs/source/main_classes/processors.rst +0 -153
  35. server/transformers/docs/source/main_classes/tokenizer.rst +0 -16
  36. server/transformers/docs/source/migration.md +0 -109
  37. server/transformers/docs/source/model_doc/albert.rst +0 -64
  38. server/transformers/docs/source/model_doc/auto.rst +0 -29
  39. server/transformers/docs/source/model_doc/bert.rst +0 -128
  40. server/transformers/docs/source/model_doc/camembert.rst +0 -50
  41. server/transformers/docs/source/model_doc/ctrl.rst +0 -49
  42. server/transformers/docs/source/model_doc/distilbert.rst +0 -70
  43. server/transformers/docs/source/model_doc/gpt.rst +0 -57
  44. server/transformers/docs/source/model_doc/gpt2.rst +0 -57
  45. server/transformers/docs/source/model_doc/roberta.rst +0 -57
  46. server/transformers/docs/source/model_doc/transformerxl.rst +0 -44
  47. server/transformers/docs/source/model_doc/xlm.rst +0 -76
  48. server/transformers/docs/source/model_doc/xlnet.rst +0 -92
  49. server/transformers/docs/source/model_sharing.md +0 -40
  50. server/transformers/docs/source/multilingual.rst +0 -103
server/transformers/CONTRIBUTING.md DELETED
@@ -1,262 +0,0 @@
1
- # How to contribute to transformers?
2
-
3
- Everyone is welcome to contribute, and we value everybody's contribution. Code
4
- is thus not the only way to help the community. Answering questions, helping
5
- others, reaching out and improving the documentations are immensely valuable to
6
- the community.
7
-
8
- It also helps us if you spread the word: reference the library from blog posts
9
- on the awesome projects it made possible, shout out on Twitter every time it has
10
- helped you, or simply star the repo to say "thank you".
11
-
12
- ## You can contribute in so many ways!
13
-
14
- There are 4 ways you can contribute to transformers:
15
- * Fixing outstanding issues with the existing code;
16
- * Implementing new models;
17
- * Contributing to the examples or to the documentation;
18
- * Submitting issues related to bugs or desired new features.
19
-
20
- *All are equally valuable to the community.*
21
-
22
- ## Submitting a new issue or feature request
23
-
24
- Do your best to follow these guidelines when submitting an issue or a feature
25
- request. It will make it easier for us to come back to you quickly and with good
26
- feedback.
27
-
28
- ### Did you find a bug?
29
-
30
- The transformers are robust and reliable thanks to the users who notify us of
31
- the problems they encounter. So thank you for reporting an issue.
32
-
33
- First, we would really appreciate it if you could **make sure the bug was not
34
- already reported** (use the search bar on Github under Issues).
35
-
36
- Did not find it? :( So we can act quickly on it, please follow these steps:
37
-
38
- * Include your **OS type and version**, the versions of **Python**, **PyTorch** and
39
- **Tensorflow** when applicable;
40
- * A short, self-contained, code snippet that allows us to reproduce the bug in
41
- less than 30s;
42
- * Provide the *full* traceback if an exception is raised.
43
-
44
- To get the OS and software versions, execute the following code and copy-paste
45
- the output:
46
-
47
- ```
48
- import platform; print("Platform", platform.platform())
49
- import sys; print("Python", sys.version)
50
- import torch; print("PyTorch", torch.__version__)
51
- import tensorflow; print("Tensorflow", tensorflow.__version__)
52
- ```
53
-
54
- ### Do you want to implement a new model?
55
-
56
- Awesome! Please provide the following information:
57
-
58
- * Short description of the model and link to the paper;
59
- * Link to the implementation if it is open-source;
60
- * Link to the model weights if they are available.
61
-
62
- If you are willing to contribute the model yourself, let us know so we can best
63
- guide you.
64
-
65
- We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder.
66
-
67
- ### Do you want a new feature (that is not a model)?
68
-
69
- A world-class feature request addresses the following points:
70
-
71
- 1. Motivation first:
72
- * Is it related to a problem/frustration with the library? If so, please explain
73
- why. Providing a code snippet that demonstrates the problem is best.
74
- * Is it related to something you would need for a project? We'd love to hear
75
- about it!
76
- * Is it something you worked on and think could benefit the community?
77
- Awesome! Tell us what problem it solved for you.
78
- 2. Write a *full paragraph* describing the feature;
79
- 3. Provide a **code snippet** that demonstrates its future use;
80
- 4. In case this is related to a paper, please attach a link;
81
- 5. Attach any additional information (drawings, screenshots, etc.) you think may help.
82
-
83
- If your issue is well written we're already 80% of the way there by the time you
84
- post it.
85
-
86
- We have added **templates** to guide you in the process of adding a new example script for training or testing the models in the library. You can find them in the [`templates`](./templates) folder.
87
-
88
- ## Start contributing! (Pull Requests)
89
-
90
- Before writing code, we strongly advise you to search through the exising PRs or
91
- issues to make sure that nobody is already working on the same thing. If you are
92
- unsure, it is always a good idea to open an issue to get some feedback.
93
-
94
- You will need basic `git` proficiency to be able to contribute to
95
- `transformers`. `git` is not the easiest tool to use but it has the greatest
96
- manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
97
- Git](https://git-scm.com/book/en/v2) is a very good reference.
98
-
99
- Follow these steps to start contributing:
100
-
101
- 1. Fork the [repository](https://github.com/huggingface/transformers) by
102
- clicking on the 'Fork' button on the repository's page. This creates a copy of the code
103
- under your GitHub user account.
104
-
105
- 2. Clone your fork to your local disk, and add the base repository as a remote:
106
-
107
- ```bash
108
- $ git clone [email protected]:<your Github handle>/transformers.git
109
- $ cd transformers
110
- $ git remote add upstream https://github.com/huggingface/transformers.git
111
- ```
112
-
113
- 3. Create a new branch to hold your development changes:
114
-
115
- ```bash
116
- $ git checkout -b a-descriptive-name-for-my-changes
117
- ```
118
-
119
- **do not** work on the `master` branch.
120
-
121
- 4. Set up a development environment by running the following command in a virtual environment:
122
-
123
- ```bash
124
- $ pip install -e ".[dev]"
125
- ```
126
-
127
- (If transformers was already installed in the virtual environment, remove
128
- it with `pip uninstall transformers` before reinstalling it in editable
129
- mode with the `-e` flag.)
130
-
131
- Right now, we need an unreleased version of `isort` to avoid a
132
- [bug](https://github.com/timothycrosley/isort/pull/1000):
133
-
134
- ```bash
135
- $ pip install -U git+git://github.com/timothycrosley/isort.git@e63ae06ec7d70b06df9e528357650281a3d3ec22#egg=isort
136
- ```
137
-
138
- 5. Develop the features on your branch.
139
-
140
- As you work on the features, you should make sure that the test suite
141
- passes:
142
-
143
- ```bash
144
- $ make test
145
- ```
146
-
147
- `transformers` relies on `black` and `isort` to format its source code
148
- consistently. After you make changes, format them with:
149
-
150
- ```bash
151
- $ make style
152
- ```
153
-
154
- `transformers` also uses `flake8` to check for coding mistakes. Quality
155
- control runs in CI, however you can also run the same checks with:
156
-
157
- ```bash
158
- $ make quality
159
- ```
160
-
161
- Once you're happy with your changes, add changed files using `git add` and
162
- make a commit with `git commit` to record your changes locally:
163
-
164
- ```bash
165
- $ git add modified_file.py
166
- $ git commit
167
- ```
168
-
169
- Please write [good commit
170
- messages](https://chris.beams.io/posts/git-commit/).
171
-
172
- It is a good idea to sync your copy of the code with the original
173
- repository regularly. This way you can quickly account for changes:
174
-
175
- ```bash
176
- $ git fetch upstream
177
- $ git rebase upstream/master
178
- ```
179
-
180
- Push the changes to your account using:
181
-
182
- ```bash
183
- $ git push -u origin a-descriptive-name-for-my-changes
184
- ```
185
-
186
- 6. Once you are satisfied (**and the checklist below is happy too**), go to the
187
- webpage of your fork on GitHub. Click on 'Pull request' to send your changes
188
- to the project maintainers for review.
189
-
190
- 7. It's ok if maintainers ask you for changes. It happens to core contributors
191
- too! So everyone can see the changes in the Pull request, work in your local
192
- branch and push the changes to your fork. They will automatically appear in
193
- the pull request.
194
-
195
-
196
- ### Checklist
197
-
198
- 1. The title of your pull request should be a summary of its contribution;
199
- 2. If your pull request adresses an issue, please mention the issue number in
200
- the pull request description to make sure they are linked (and people
201
- consulting the issue know you are working on it);
202
- 3. To indicate a work in progress please prefix the title with `[WIP]`. These
203
- are useful to avoid duplicated work, and to differentiate it from PRs ready
204
- to be merged;
205
- 4. Make sure pre-existing tests still pass;
206
- 5. Add high-coverage tests. No quality test, no merge;
207
- 6. All public methods must have informative docstrings;
208
-
209
-
210
- ### Tests
211
-
212
- You can run 🤗 Transformers tests with `unittest` or `pytest`.
213
-
214
- We like `pytest` and `pytest-xdist` because it's faster. From the root of the
215
- repository, here's how to run tests with `pytest` for the library:
216
-
217
- ```bash
218
- $ python -m pytest -n auto --dist=loadfile -s -v ./tests/
219
- ```
220
-
221
- and for the examples:
222
-
223
- ```bash
224
- $ pip install -r examples/requirements.txt # only needed the first time
225
- $ python -m pytest -n auto --dist=loadfile -s -v ./examples/
226
- ```
227
-
228
- In fact, that's how `make test` and `make test-examples` are implemented!
229
-
230
- You can specify a smaller set of tests in order to test only the feature
231
- you're working on.
232
-
233
- By default, slow tests are skipped. Set the `RUN_SLOW` environment variable to
234
- `yes` to run them. This will download many gigabytes of models — make sure you
235
- have enough disk space and a good Internet connection, or a lot of patience!
236
-
237
- ```bash
238
- $ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/
239
- $ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./examples/
240
- ```
241
-
242
- Likewise, set the `RUN_CUSTOM_TOKENIZERS` environment variable to `yes` to run
243
- tests for custom tokenizers, which don't run by default either.
244
-
245
- 🤗 Transformers uses `pytest` as a test runner only. It doesn't use any
246
- `pytest`-specific features in the test suite itself.
247
-
248
- This means `unittest` is fully supported. Here's how to run tests with
249
- `unittest`:
250
-
251
- ```bash
252
- $ python -m unittest discover -s tests -t . -v
253
- $ python -m unittest discover -s examples -t examples -v
254
- ```
255
-
256
-
257
- ### Style guide
258
-
259
- For documentation strings, `transformers` follows the [google
260
- style](https://google.github.io/styleguide/pyguide.html).
261
-
262
- #### This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/LICENSE DELETED
@@ -1,202 +0,0 @@
1
-
2
- Apache License
3
- Version 2.0, January 2004
4
- http://www.apache.org/licenses/
5
-
6
- TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
-
8
- 1. Definitions.
9
-
10
- "License" shall mean the terms and conditions for use, reproduction,
11
- and distribution as defined by Sections 1 through 9 of this document.
12
-
13
- "Licensor" shall mean the copyright owner or entity authorized by
14
- the copyright owner that is granting the License.
15
-
16
- "Legal Entity" shall mean the union of the acting entity and all
17
- other entities that control, are controlled by, or are under common
18
- control with that entity. For the purposes of this definition,
19
- "control" means (i) the power, direct or indirect, to cause the
20
- direction or management of such entity, whether by contract or
21
- otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
- outstanding shares, or (iii) beneficial ownership of such entity.
23
-
24
- "You" (or "Your") shall mean an individual or Legal Entity
25
- exercising permissions granted by this License.
26
-
27
- "Source" form shall mean the preferred form for making modifications,
28
- including but not limited to software source code, documentation
29
- source, and configuration files.
30
-
31
- "Object" form shall mean any form resulting from mechanical
32
- transformation or translation of a Source form, including but
33
- not limited to compiled object code, generated documentation,
34
- and conversions to other media types.
35
-
36
- "Work" shall mean the work of authorship, whether in Source or
37
- Object form, made available under the License, as indicated by a
38
- copyright notice that is included in or attached to the work
39
- (an example is provided in the Appendix below).
40
-
41
- "Derivative Works" shall mean any work, whether in Source or Object
42
- form, that is based on (or derived from) the Work and for which the
43
- editorial revisions, annotations, elaborations, or other modifications
44
- represent, as a whole, an original work of authorship. For the purposes
45
- of this License, Derivative Works shall not include works that remain
46
- separable from, or merely link (or bind by name) to the interfaces of,
47
- the Work and Derivative Works thereof.
48
-
49
- "Contribution" shall mean any work of authorship, including
50
- the original version of the Work and any modifications or additions
51
- to that Work or Derivative Works thereof, that is intentionally
52
- submitted to Licensor for inclusion in the Work by the copyright owner
53
- or by an individual or Legal Entity authorized to submit on behalf of
54
- the copyright owner. For the purposes of this definition, "submitted"
55
- means any form of electronic, verbal, or written communication sent
56
- to the Licensor or its representatives, including but not limited to
57
- communication on electronic mailing lists, source code control systems,
58
- and issue tracking systems that are managed by, or on behalf of, the
59
- Licensor for the purpose of discussing and improving the Work, but
60
- excluding communication that is conspicuously marked or otherwise
61
- designated in writing by the copyright owner as "Not a Contribution."
62
-
63
- "Contributor" shall mean Licensor and any individual or Legal Entity
64
- on behalf of whom a Contribution has been received by Licensor and
65
- subsequently incorporated within the Work.
66
-
67
- 2. Grant of Copyright License. Subject to the terms and conditions of
68
- this License, each Contributor hereby grants to You a perpetual,
69
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
- copyright license to reproduce, prepare Derivative Works of,
71
- publicly display, publicly perform, sublicense, and distribute the
72
- Work and such Derivative Works in Source or Object form.
73
-
74
- 3. Grant of Patent License. Subject to the terms and conditions of
75
- this License, each Contributor hereby grants to You a perpetual,
76
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
- (except as stated in this section) patent license to make, have made,
78
- use, offer to sell, sell, import, and otherwise transfer the Work,
79
- where such license applies only to those patent claims licensable
80
- by such Contributor that are necessarily infringed by their
81
- Contribution(s) alone or by combination of their Contribution(s)
82
- with the Work to which such Contribution(s) was submitted. If You
83
- institute patent litigation against any entity (including a
84
- cross-claim or counterclaim in a lawsuit) alleging that the Work
85
- or a Contribution incorporated within the Work constitutes direct
86
- or contributory patent infringement, then any patent licenses
87
- granted to You under this License for that Work shall terminate
88
- as of the date such litigation is filed.
89
-
90
- 4. Redistribution. You may reproduce and distribute copies of the
91
- Work or Derivative Works thereof in any medium, with or without
92
- modifications, and in Source or Object form, provided that You
93
- meet the following conditions:
94
-
95
- (a) You must give any other recipients of the Work or
96
- Derivative Works a copy of this License; and
97
-
98
- (b) You must cause any modified files to carry prominent notices
99
- stating that You changed the files; and
100
-
101
- (c) You must retain, in the Source form of any Derivative Works
102
- that You distribute, all copyright, patent, trademark, and
103
- attribution notices from the Source form of the Work,
104
- excluding those notices that do not pertain to any part of
105
- the Derivative Works; and
106
-
107
- (d) If the Work includes a "NOTICE" text file as part of its
108
- distribution, then any Derivative Works that You distribute must
109
- include a readable copy of the attribution notices contained
110
- within such NOTICE file, excluding those notices that do not
111
- pertain to any part of the Derivative Works, in at least one
112
- of the following places: within a NOTICE text file distributed
113
- as part of the Derivative Works; within the Source form or
114
- documentation, if provided along with the Derivative Works; or,
115
- within a display generated by the Derivative Works, if and
116
- wherever such third-party notices normally appear. The contents
117
- of the NOTICE file are for informational purposes only and
118
- do not modify the License. You may add Your own attribution
119
- notices within Derivative Works that You distribute, alongside
120
- or as an addendum to the NOTICE text from the Work, provided
121
- that such additional attribution notices cannot be construed
122
- as modifying the License.
123
-
124
- You may add Your own copyright statement to Your modifications and
125
- may provide additional or different license terms and conditions
126
- for use, reproduction, or distribution of Your modifications, or
127
- for any such Derivative Works as a whole, provided Your use,
128
- reproduction, and distribution of the Work otherwise complies with
129
- the conditions stated in this License.
130
-
131
- 5. Submission of Contributions. Unless You explicitly state otherwise,
132
- any Contribution intentionally submitted for inclusion in the Work
133
- by You to the Licensor shall be under the terms and conditions of
134
- this License, without any additional terms or conditions.
135
- Notwithstanding the above, nothing herein shall supersede or modify
136
- the terms of any separate license agreement you may have executed
137
- with Licensor regarding such Contributions.
138
-
139
- 6. Trademarks. This License does not grant permission to use the trade
140
- names, trademarks, service marks, or product names of the Licensor,
141
- except as required for reasonable and customary use in describing the
142
- origin of the Work and reproducing the content of the NOTICE file.
143
-
144
- 7. Disclaimer of Warranty. Unless required by applicable law or
145
- agreed to in writing, Licensor provides the Work (and each
146
- Contributor provides its Contributions) on an "AS IS" BASIS,
147
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
- implied, including, without limitation, any warranties or conditions
149
- of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
- PARTICULAR PURPOSE. You are solely responsible for determining the
151
- appropriateness of using or redistributing the Work and assume any
152
- risks associated with Your exercise of permissions under this License.
153
-
154
- 8. Limitation of Liability. In no event and under no legal theory,
155
- whether in tort (including negligence), contract, or otherwise,
156
- unless required by applicable law (such as deliberate and grossly
157
- negligent acts) or agreed to in writing, shall any Contributor be
158
- liable to You for damages, including any direct, indirect, special,
159
- incidental, or consequential damages of any character arising as a
160
- result of this License or out of the use or inability to use the
161
- Work (including but not limited to damages for loss of goodwill,
162
- work stoppage, computer failure or malfunction, or any and all
163
- other commercial damages or losses), even if such Contributor
164
- has been advised of the possibility of such damages.
165
-
166
- 9. Accepting Warranty or Additional Liability. While redistributing
167
- the Work or Derivative Works thereof, You may choose to offer,
168
- and charge a fee for, acceptance of support, warranty, indemnity,
169
- or other liability obligations and/or rights consistent with this
170
- License. However, in accepting such obligations, You may act only
171
- on Your own behalf and on Your sole responsibility, not on behalf
172
- of any other Contributor, and only if You agree to indemnify,
173
- defend, and hold each Contributor harmless for any liability
174
- incurred by, or claims asserted against, such Contributor by reason
175
- of your accepting any such warranty or additional liability.
176
-
177
- END OF TERMS AND CONDITIONS
178
-
179
- APPENDIX: How to apply the Apache License to your work.
180
-
181
- To apply the Apache License to your work, attach the following
182
- boilerplate notice, with the fields enclosed by brackets "[]"
183
- replaced with your own identifying information. (Don't include
184
- the brackets!) The text should be enclosed in the appropriate
185
- comment syntax for the file format. We also recommend that a
186
- file or class name and description of purpose be included on the
187
- same "printed page" as the copyright notice for easier
188
- identification within third-party archives.
189
-
190
- Copyright [yyyy] [name of copyright owner]
191
-
192
- Licensed under the Apache License, Version 2.0 (the "License");
193
- you may not use this file except in compliance with the License.
194
- You may obtain a copy of the License at
195
-
196
- http://www.apache.org/licenses/LICENSE-2.0
197
-
198
- Unless required by applicable law or agreed to in writing, software
199
- distributed under the License is distributed on an "AS IS" BASIS,
200
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201
- See the License for the specific language governing permissions and
202
- limitations under the License.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/MANIFEST.in DELETED
@@ -1 +0,0 @@
1
- include LICENSE
 
 
server/transformers/Makefile DELETED
@@ -1,24 +0,0 @@
1
- .PHONY: quality style test test-examples
2
-
3
- # Check that source code meets quality standards
4
-
5
- quality:
6
- black --check --line-length 119 --target-version py35 examples templates tests src utils
7
- isort --check-only --recursive examples templates tests src utils
8
- flake8 examples templates tests src utils
9
-
10
- # Format source code automatically
11
-
12
- style:
13
- black --line-length 119 --target-version py35 examples templates tests src utils
14
- isort --recursive examples templates tests src utils
15
-
16
- # Run tests for the library
17
-
18
- test:
19
- python -m pytest -n auto --dist=loadfile -s -v ./tests/
20
-
21
- # Run tests for examples
22
-
23
- test-examples:
24
- python -m pytest -n auto --dist=loadfile -s -v ./examples/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/README.md DELETED
@@ -1,676 +0,0 @@
1
- <p align="center">
2
- <br>
3
- <img src="https://raw.githubusercontent.com/huggingface/transformers/master/docs/source/imgs/transformers_logo_name.png" width="400"/>
4
- <br>
5
- <p>
6
- <p align="center">
7
- <a href="https://circleci.com/gh/huggingface/transformers">
8
- <img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master">
9
- </a>
10
- <a href="https://github.com/huggingface/transformers/blob/master/LICENSE">
11
- <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
12
- </a>
13
- <a href="https://huggingface.co/transformers/index.html">
14
- <img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/transformers/index.html.svg?down_color=red&down_message=offline&up_message=online">
15
- </a>
16
- <a href="https://github.com/huggingface/transformers/releases">
17
- <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
18
- </a>
19
- </p>
20
-
21
- <h3 align="center">
22
- <p>State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch
23
- </h3>
24
-
25
- 🤗 Transformers (formerly known as `pytorch-transformers` and `pytorch-pretrained-bert`) provides state-of-the-art general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet, CTRL...) for Natural Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between TensorFlow 2.0 and PyTorch.
26
-
27
- ### Features
28
-
29
- - As easy to use as pytorch-transformers
30
- - As powerful and concise as Keras
31
- - High performance on NLU and NLG tasks
32
- - Low barrier to entry for educators and practitioners
33
-
34
- State-of-the-art NLP for everyone
35
- - Deep learning researchers
36
- - Hands-on practitioners
37
- - AI/ML/NLP teachers and educators
38
-
39
- Lower compute costs, smaller carbon footprint
40
- - Researchers can share trained models instead of always retraining
41
- - Practitioners can reduce compute time and production costs
42
- - 10 architectures with over 30 pretrained models, some in more than 100 languages
43
-
44
- Choose the right framework for every part of a model's lifetime
45
- - Train state-of-the-art models in 3 lines of code
46
- - Deep interoperability between TensorFlow 2.0 and PyTorch models
47
- - Move a single model between TF2.0/PyTorch frameworks at will
48
- - Seamlessly pick the right framework for training, evaluation, production
49
-
50
-
51
- | Section | Description |
52
- |-|-|
53
- | [Installation](#installation) | How to install the package |
54
- | [Model architectures](#model-architectures) | Architectures (with pretrained weights) |
55
- | [Online demo](#online-demo) | Experimenting with this repo’s text generation capabilities |
56
- | [Quick tour: Usage](#quick-tour) | Tokenizers & models usage: Bert and GPT-2 |
57
- | [Quick tour: TF 2.0 and PyTorch ](#Quick-tour-TF-20-training-and-PyTorch-interoperability) | Train a TF 2.0 model in 10 lines of code, load it in PyTorch |
58
- | [Quick tour: pipelines](#quick-tour-of-pipelines) | Using Pipelines: Wrapper around tokenizer and models to use finetuned models |
59
- | [Quick tour: Fine-tuning/usage scripts](#quick-tour-of-the-fine-tuningusage-scripts) | Using provided scripts: GLUE, SQuAD and Text generation |
60
- | [Quick tour: Share your models ](#Quick-tour-of-model-sharing) | Upload and share your fine-tuned models with the community |
61
- | [Migrating from pytorch-transformers to transformers](#Migrating-from-pytorch-transformers-to-transformers) | Migrating your code from pytorch-transformers to transformers |
62
- | [Migrating from pytorch-pretrained-bert to pytorch-transformers](#Migrating-from-pytorch-pretrained-bert-to-transformers) | Migrating your code from pytorch-pretrained-bert to transformers |
63
- | [Documentation][(v2.3.0)](https://huggingface.co/transformers/v2.3.0)[(v2.2.0/v2.2.1/v2.2.2)](https://huggingface.co/transformers/v2.2.0) [(v2.1.1)](https://huggingface.co/transformers/v2.1.1) [(v2.0.0)](https://huggingface.co/transformers/v2.0.0) [(v1.2.0)](https://huggingface.co/transformers/v1.2.0) [(v1.1.0)](https://huggingface.co/transformers/v1.1.0) [(v1.0.0)](https://huggingface.co/transformers/v1.0.0) [(master)](https://huggingface.co/transformers) | Full API documentation and more |
64
-
65
- ## Installation
66
-
67
- This repo is tested on Python 3.5+, PyTorch 1.0.0+ and TensorFlow 2.0.0-rc1
68
-
69
- You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
70
-
71
- Create a virtual environment with the version of Python you're going to use and activate it.
72
-
73
- Now, if you want to use 🤗 Transformers, you can install it with pip. If you'd like to play with the examples, you must install it from source.
74
-
75
- ### With pip
76
-
77
- First you need to install one of, or both, TensorFlow 2.0 and PyTorch.
78
- Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/pip#tensorflow-2.0-rc-is-available) and/or [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) regarding the specific install command for your platform.
79
-
80
- When TensorFlow 2.0 and/or PyTorch has been installed, 🤗 Transformers can be installed using pip as follows:
81
-
82
- ```bash
83
- pip install transformers
84
- ```
85
-
86
- ### From source
87
-
88
- Here also, you first need to install one of, or both, TensorFlow 2.0 and PyTorch.
89
- Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/pip#tensorflow-2.0-rc-is-available) and/or [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) regarding the specific install command for your platform.
90
-
91
- When TensorFlow 2.0 and/or PyTorch has been installed, you can install from source by cloning the repository and running:
92
-
93
- ```bash
94
- git clone https://github.com/huggingface/transformers
95
- cd transformers
96
- pip install .
97
- ```
98
-
99
- When you update the repository, you should upgrade the transformers installation and its dependencies as follows:
100
-
101
- ```bash
102
- git pull
103
- pip install --upgrade .
104
- ```
105
-
106
- ### Run the examples
107
-
108
- Examples are included in the repository but are not shipped with the library.
109
-
110
- Therefore, in order to run the latest versions of the examples, you need to install from source, as described above.
111
-
112
- Look at the [README](https://github.com/huggingface/transformers/blob/master/examples/README.md) for how to run examples.
113
-
114
- ### Tests
115
-
116
- A series of tests are included for the library and for some example scripts. Library tests can be found in the [tests folder](https://github.com/huggingface/transformers/tree/master/tests) and examples tests in the [examples folder](https://github.com/huggingface/transformers/tree/master/examples).
117
-
118
- Depending on which framework is installed (TensorFlow 2.0 and/or PyTorch), the irrelevant tests will be skipped. Ensure that both frameworks are installed if you want to execute all tests.
119
-
120
- Here's the easiest way to run tests for the library:
121
-
122
- ```bash
123
- pip install -e ".[testing]"
124
- make test
125
- ```
126
-
127
- and for the examples:
128
-
129
- ```bash
130
- pip install -e ".[testing]"
131
- pip install -r examples/requirements.txt
132
- make test-examples
133
- ```
134
-
135
- For details, refer to the [contributing guide](https://github.com/huggingface/transformers/blob/master/CONTRIBUTING.md#tests).
136
-
137
- ### Do you want to run a Transformer model on a mobile device?
138
-
139
- You should check out our [`swift-coreml-transformers`](https://github.com/huggingface/swift-coreml-transformers) repo.
140
-
141
- It contains a set of tools to convert PyTorch or TensorFlow 2.0 trained Transformer models (currently contains `GPT-2`, `DistilGPT-2`, `BERT`, and `DistilBERT`) to CoreML models that run on iOS devices.
142
-
143
- At some point in the future, you'll be able to seamlessly move from pre-training or fine-tuning models to productizing them in CoreML, or prototype a model or an app in CoreML then research its hyperparameters or architecture from TensorFlow 2.0 and/or PyTorch. Super exciting!
144
-
145
- ## Model architectures
146
-
147
- 🤗 Transformers currently provides the following NLU/NLG architectures:
148
-
149
- 1. **[BERT](https://github.com/google-research/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
150
- 2. **[GPT](https://github.com/openai/finetune-transformer-lm)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
151
- 3. **[GPT-2](https://blog.openai.com/better-language-models/)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
152
- 4. **[Transformer-XL](https://github.com/kimiyoung/transformer-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
153
- 5. **[XLNet](https://github.com/zihangdai/xlnet/)** (from Google/CMU) released with the paper [​XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
154
- 6. **[XLM](https://github.com/facebookresearch/XLM/)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
155
- 7. **[RoBERTa](https://github.com/pytorch/fairseq/tree/master/examples/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
156
- 8. **[DistilBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) and a German version of DistilBERT.
157
- 9. **[CTRL](https://github.com/salesforce/ctrl/)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
158
- 10. **[CamemBERT](https://camembert-model.fr)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
159
- 11. **[ALBERT](https://github.com/google-research/ALBERT)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
160
- 12. **[T5](https://github.com/google-research/text-to-text-transfer-transformer)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
161
- 13. **[XLM-RoBERTa](https://github.com/pytorch/fairseq/tree/master/examples/xlmr)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
162
- 14. **[MMBT](https://github.com/facebookresearch/mmbt/)** (from Facebook), released together with the paper a [Supervised Multimodal Bitransformers for Classifying Images and Text](https://arxiv.org/pdf/1909.02950.pdf) by Douwe Kiela, Suvrat Bhooshan, Hamed Firooz, Davide Testuggine.
163
- 15. **[Other community models](https://huggingface.co/models)**, contributed by the [community](https://huggingface.co/users).
164
- 16. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedbacks before starting your PR.
165
-
166
- These implementations have been tested on several datasets (see the example scripts) and should match the performances of the original implementations (e.g. ~93 F1 on SQuAD for BERT Whole-Word-Masking, ~88 F1 on RocStories for OpenAI GPT, ~18.3 perplexity on WikiText 103 for Transformer-XL, ~0.916 Peason R coefficient on STS-B for XLNet). You can find more details on the performances in the Examples section of the [documentation](https://huggingface.co/transformers/examples.html).
167
-
168
- ## Online demo
169
-
170
- **[Write With Transformer](https://transformer.huggingface.co)**, built by the Hugging Face team at transformer.huggingface.co, is the official demo of this repo’s text generation capabilities.
171
- You can use it to experiment with completions generated by `GPT2Model`, `TransfoXLModel`, and `XLNetModel`.
172
-
173
- > “🦄 Write with transformer is to writing what calculators are to calculus.”
174
-
175
- ![write_with_transformer](https://transformer.huggingface.co/front/assets/thumbnail-large.png)
176
-
177
- ## Quick tour
178
-
179
- Let's do a very quick overview of the model architectures in 🤗 Transformers. Detailed examples for each model architecture (Bert, GPT, GPT-2, Transformer-XL, XLNet and XLM) can be found in the [full documentation](https://huggingface.co/transformers/).
180
-
181
- ```python
182
- import torch
183
- from transformers import *
184
-
185
- # Transformers has a unified API
186
- # for 10 transformer architectures and 30 pretrained weights.
187
- # Model | Tokenizer | Pretrained weights shortcut
188
- MODELS = [(BertModel, BertTokenizer, 'bert-base-uncased'),
189
- (OpenAIGPTModel, OpenAIGPTTokenizer, 'openai-gpt'),
190
- (GPT2Model, GPT2Tokenizer, 'gpt2'),
191
- (CTRLModel, CTRLTokenizer, 'ctrl'),
192
- (TransfoXLModel, TransfoXLTokenizer, 'transfo-xl-wt103'),
193
- (XLNetModel, XLNetTokenizer, 'xlnet-base-cased'),
194
- (XLMModel, XLMTokenizer, 'xlm-mlm-enfr-1024'),
195
- (DistilBertModel, DistilBertTokenizer, 'distilbert-base-uncased'),
196
- (RobertaModel, RobertaTokenizer, 'roberta-base'),
197
- (XLMRobertaModel, XLMRobertaTokenizer, 'xlm-roberta-base'),
198
- ]
199
-
200
- # To use TensorFlow 2.0 versions of the models, simply prefix the class names with 'TF', e.g. `TFRobertaModel` is the TF 2.0 counterpart of the PyTorch model `RobertaModel`
201
-
202
- # Let's encode some text in a sequence of hidden-states using each model:
203
- for model_class, tokenizer_class, pretrained_weights in MODELS:
204
- # Load pretrained model/tokenizer
205
- tokenizer = tokenizer_class.from_pretrained(pretrained_weights)
206
- model = model_class.from_pretrained(pretrained_weights)
207
-
208
- # Encode text
209
- input_ids = torch.tensor([tokenizer.encode("Here is some text to encode", add_special_tokens=True)]) # Add special tokens takes care of adding [CLS], [SEP], <s>... tokens in the right way for each model.
210
- with torch.no_grad():
211
- last_hidden_states = model(input_ids)[0] # Models outputs are now tuples
212
-
213
- # Each architecture is provided with several class for fine-tuning on down-stream tasks, e.g.
214
- BERT_MODEL_CLASSES = [BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction,
215
- BertForSequenceClassification, BertForTokenClassification, BertForQuestionAnswering]
216
-
217
- # All the classes for an architecture can be initiated from pretrained weights for this architecture
218
- # Note that additional weights added for fine-tuning are only initialized
219
- # and need to be trained on the down-stream task
220
- pretrained_weights = 'bert-base-uncased'
221
- tokenizer = BertTokenizer.from_pretrained(pretrained_weights)
222
- for model_class in BERT_MODEL_CLASSES:
223
- # Load pretrained model/tokenizer
224
- model = model_class.from_pretrained(pretrained_weights)
225
-
226
- # Models can return full list of hidden-states & attentions weights at each layer
227
- model = model_class.from_pretrained(pretrained_weights,
228
- output_hidden_states=True,
229
- output_attentions=True)
230
- input_ids = torch.tensor([tokenizer.encode("Let's see all hidden-states and attentions on this text")])
231
- all_hidden_states, all_attentions = model(input_ids)[-2:]
232
-
233
- # Models are compatible with Torchscript
234
- model = model_class.from_pretrained(pretrained_weights, torchscript=True)
235
- traced_model = torch.jit.trace(model, (input_ids,))
236
-
237
- # Simple serialization for models and tokenizers
238
- model.save_pretrained('./directory/to/save/') # save
239
- model = model_class.from_pretrained('./directory/to/save/') # re-load
240
- tokenizer.save_pretrained('./directory/to/save/') # save
241
- tokenizer = BertTokenizer.from_pretrained('./directory/to/save/') # re-load
242
-
243
- # SOTA examples for GLUE, SQUAD, text generation...
244
- ```
245
-
246
- ## Quick tour TF 2.0 training and PyTorch interoperability
247
-
248
- Let's do a quick example of how a TensorFlow 2.0 model can be trained in 12 lines of code with 🤗 Transformers and then loaded in PyTorch for fast inspection/tests.
249
-
250
- ```python
251
- import tensorflow as tf
252
- import tensorflow_datasets
253
- from transformers import *
254
-
255
- # Load dataset, tokenizer, model from pretrained model/vocabulary
256
- tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
257
- model = TFBertForSequenceClassification.from_pretrained('bert-base-cased')
258
- data = tensorflow_datasets.load('glue/mrpc')
259
-
260
- # Prepare dataset for GLUE as a tf.data.Dataset instance
261
- train_dataset = glue_convert_examples_to_features(data['train'], tokenizer, max_length=128, task='mrpc')
262
- valid_dataset = glue_convert_examples_to_features(data['validation'], tokenizer, max_length=128, task='mrpc')
263
- train_dataset = train_dataset.shuffle(100).batch(32).repeat(2)
264
- valid_dataset = valid_dataset.batch(64)
265
-
266
- # Prepare training: Compile tf.keras model with optimizer, loss and learning rate schedule
267
- optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
268
- loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
269
- metric = tf.keras.metrics.SparseCategoricalAccuracy('accuracy')
270
- model.compile(optimizer=optimizer, loss=loss, metrics=[metric])
271
-
272
- # Train and evaluate using tf.keras.Model.fit()
273
- history = model.fit(train_dataset, epochs=2, steps_per_epoch=115,
274
- validation_data=valid_dataset, validation_steps=7)
275
-
276
- # Load the TensorFlow model in PyTorch for inspection
277
- model.save_pretrained('./save/')
278
- pytorch_model = BertForSequenceClassification.from_pretrained('./save/', from_tf=True)
279
-
280
- # Quickly test a few predictions - MRPC is a paraphrasing task, let's see if our model learned the task
281
- sentence_0 = "This research was consistent with his findings."
282
- sentence_1 = "His findings were compatible with this research."
283
- sentence_2 = "His findings were not compatible with this research."
284
- inputs_1 = tokenizer.encode_plus(sentence_0, sentence_1, add_special_tokens=True, return_tensors='pt')
285
- inputs_2 = tokenizer.encode_plus(sentence_0, sentence_2, add_special_tokens=True, return_tensors='pt')
286
-
287
- pred_1 = pytorch_model(inputs_1['input_ids'], token_type_ids=inputs_1['token_type_ids'])[0].argmax().item()
288
- pred_2 = pytorch_model(inputs_2['input_ids'], token_type_ids=inputs_2['token_type_ids'])[0].argmax().item()
289
-
290
- print("sentence_1 is", "a paraphrase" if pred_1 else "not a paraphrase", "of sentence_0")
291
- print("sentence_2 is", "a paraphrase" if pred_2 else "not a paraphrase", "of sentence_0")
292
- ```
293
-
294
- ## Quick tour of the fine-tuning/usage scripts
295
-
296
- **Important**
297
- Before running the fine-tuning scripts, please read the
298
- [instructions](#run-the-examples) on how to
299
- setup your environment to run the examples.
300
-
301
- The library comprises several example scripts with SOTA performances for NLU and NLG tasks:
302
-
303
- - `run_glue.py`: an example fine-tuning Bert, XLNet and XLM on nine different GLUE tasks (*sequence-level classification*)
304
- - `run_squad.py`: an example fine-tuning Bert, XLNet and XLM on the question answering dataset SQuAD 2.0 (*token-level classification*)
305
- - `run_generation.py`: an example using GPT, GPT-2, CTRL, Transformer-XL and XLNet for conditional language generation
306
- - other model-specific examples (see the documentation).
307
-
308
- Here are three quick usage examples for these scripts:
309
-
310
- ### `run_glue.py`: Fine-tuning on GLUE tasks for sequence classification
311
-
312
- The [General Language Understanding Evaluation (GLUE) benchmark](https://gluebenchmark.com/) is a collection of nine sentence- or sentence-pair language understanding tasks for evaluating and analyzing natural language understanding systems.
313
-
314
- Before running anyone of these GLUE tasks you should download the
315
- [GLUE data](https://gluebenchmark.com/tasks) by running
316
- [this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
317
- and unpack it to some directory `$GLUE_DIR`.
318
-
319
- You should also install the additional packages required by the examples:
320
-
321
- ```shell
322
- pip install -r ./examples/requirements.txt
323
- ```
324
-
325
- ```shell
326
- export GLUE_DIR=/path/to/glue
327
- export TASK_NAME=MRPC
328
-
329
- python ./examples/run_glue.py \
330
- --model_type bert \
331
- --model_name_or_path bert-base-uncased \
332
- --task_name $TASK_NAME \
333
- --do_train \
334
- --do_eval \
335
- --do_lower_case \
336
- --data_dir $GLUE_DIR/$TASK_NAME \
337
- --max_seq_length 128 \
338
- --per_gpu_eval_batch_size=8 \
339
- --per_gpu_train_batch_size=8 \
340
- --learning_rate 2e-5 \
341
- --num_train_epochs 3.0 \
342
- --output_dir /tmp/$TASK_NAME/
343
- ```
344
-
345
- where task name can be one of CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI, RTE, WNLI.
346
-
347
- The dev set results will be present within the text file 'eval_results.txt' in the specified output_dir. In case of MNLI, since there are two separate dev sets, matched and mismatched, there will be a separate output folder called '/tmp/MNLI-MM/' in addition to '/tmp/MNLI/'.
348
-
349
- #### Fine-tuning XLNet model on the STS-B regression task
350
-
351
- This example code fine-tunes XLNet on the STS-B corpus using parallel training on a server with 4 V100 GPUs.
352
- Parallel training is a simple way to use several GPUs (but is slower and less flexible than distributed training, see below).
353
-
354
- ```shell
355
- export GLUE_DIR=/path/to/glue
356
-
357
- python ./examples/run_glue.py \
358
- --model_type xlnet \
359
- --model_name_or_path xlnet-large-cased \
360
- --do_train \
361
- --do_eval \
362
- --task_name=sts-b \
363
- --data_dir=${GLUE_DIR}/STS-B \
364
- --output_dir=./proc_data/sts-b-110 \
365
- --max_seq_length=128 \
366
- --per_gpu_eval_batch_size=8 \
367
- --per_gpu_train_batch_size=8 \
368
- --gradient_accumulation_steps=1 \
369
- --max_steps=1200 \
370
- --model_name=xlnet-large-cased \
371
- --overwrite_output_dir \
372
- --overwrite_cache \
373
- --warmup_steps=120
374
- ```
375
-
376
- On this machine we thus have a batch size of 32, please increase `gradient_accumulation_steps` to reach the same batch size if you have a smaller machine. These hyper-parameters should result in a Pearson correlation coefficient of `+0.917` on the development set.
377
-
378
- #### Fine-tuning Bert model on the MRPC classification task
379
-
380
- This example code fine-tunes the Bert Whole Word Masking model on the Microsoft Research Paraphrase Corpus (MRPC) corpus using distributed training on 8 V100 GPUs to reach a F1 > 92.
381
-
382
- ```bash
383
- python -m torch.distributed.launch --nproc_per_node 8 ./examples/run_glue.py \
384
- --model_type bert \
385
- --model_name_or_path bert-large-uncased-whole-word-masking \
386
- --task_name MRPC \
387
- --do_train \
388
- --do_eval \
389
- --do_lower_case \
390
- --data_dir $GLUE_DIR/MRPC/ \
391
- --max_seq_length 128 \
392
- --per_gpu_eval_batch_size=8 \
393
- --per_gpu_train_batch_size=8 \
394
- --learning_rate 2e-5 \
395
- --num_train_epochs 3.0 \
396
- --output_dir /tmp/mrpc_output/ \
397
- --overwrite_output_dir \
398
- --overwrite_cache \
399
- ```
400
-
401
- Training with these hyper-parameters gave us the following results:
402
-
403
- ```bash
404
- acc = 0.8823529411764706
405
- acc_and_f1 = 0.901702786377709
406
- eval_loss = 0.3418912578906332
407
- f1 = 0.9210526315789473
408
- global_step = 174
409
- loss = 0.07231863956341798
410
- ```
411
-
412
- ### `run_squad.py`: Fine-tuning on SQuAD for question-answering
413
-
414
- This example code fine-tunes BERT on the SQuAD dataset using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD:
415
-
416
- ```bash
417
- python -m torch.distributed.launch --nproc_per_node=8 ./examples/run_squad.py \
418
- --model_type bert \
419
- --model_name_or_path bert-large-uncased-whole-word-masking \
420
- --do_train \
421
- --do_eval \
422
- --do_lower_case \
423
- --train_file $SQUAD_DIR/train-v1.1.json \
424
- --predict_file $SQUAD_DIR/dev-v1.1.json \
425
- --learning_rate 3e-5 \
426
- --num_train_epochs 2 \
427
- --max_seq_length 384 \
428
- --doc_stride 128 \
429
- --output_dir ../models/wwm_uncased_finetuned_squad/ \
430
- --per_gpu_eval_batch_size=3 \
431
- --per_gpu_train_batch_size=3 \
432
- ```
433
-
434
- Training with these hyper-parameters gave us the following results:
435
-
436
- ```bash
437
- python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ../models/wwm_uncased_finetuned_squad/predictions.json
438
- {"exact_match": 86.91579943235573, "f1": 93.1532499015869}
439
- ```
440
-
441
- This is the model provided as `bert-large-uncased-whole-word-masking-finetuned-squad`.
442
-
443
- ### `run_generation.py`: Text generation with GPT, GPT-2, CTRL, Transformer-XL and XLNet
444
-
445
- A conditional generation script is also included to generate text from a prompt.
446
- The generation script includes the [tricks](https://github.com/rusiaaman/XLNet-gen#methodology) proposed by Aman Rusia to get high-quality generation with memory models like Transformer-XL and XLNet (include a predefined text to make short inputs longer).
447
-
448
- Here is how to run the script with the small version of OpenAI GPT-2 model:
449
-
450
- ```shell
451
- python ./examples/run_generation.py \
452
- --model_type=gpt2 \
453
- --length=20 \
454
- --model_name_or_path=gpt2 \
455
- ```
456
-
457
- and from the Salesforce CTRL model:
458
- ```shell
459
- python ./examples/run_generation.py \
460
- --model_type=ctrl \
461
- --length=20 \
462
- --model_name_or_path=ctrl \
463
- --temperature=0 \
464
- --repetition_penalty=1.2 \
465
- ```
466
-
467
- ## Quick tour of model sharing
468
-
469
- New in `v2.2.2`: you can now upload and share your fine-tuned models with the community, using the <abbr title="Command-line interface">CLI</abbr> that's built-in to the library.
470
-
471
- **First, create an account on [https://huggingface.co/join](https://huggingface.co/join)**. Then:
472
-
473
- ```shell
474
- transformers-cli login
475
- # log in using the same credentials as on huggingface.co
476
- ```
477
- Upload your model:
478
- ```shell
479
- transformers-cli upload ./path/to/pretrained_model/
480
-
481
- # ^^ Upload folder containing weights/tokenizer/config
482
- # saved via `.save_pretrained()`
483
-
484
- transformers-cli upload ./config.json [--filename folder/foobar.json]
485
-
486
- # ^^ Upload a single file
487
- # (you can optionally override its filename, which can be nested inside a folder)
488
- ```
489
-
490
- Your model will then be accessible through its identifier, a concatenation of your username and the folder name above:
491
- ```python
492
- "username/model_name"
493
- ```
494
-
495
- Anyone can load it from code:
496
- ```python
497
- tokenizer = AutoTokenizer.from_pretrained("username/pretrained_model")
498
- model = AutoModel.from_pretrained("username/pretrained_model")
499
- ```
500
-
501
- Finally, list all your files on S3:
502
- ```shell
503
- transformers-cli s3 ls
504
- # List all your S3 objects.
505
- ```
506
-
507
- ## Quick tour of pipelines
508
-
509
- New in version `v2.3`: `Pipeline` are high-level objects which automatically handle tokenization, running your data through a transformers model
510
- and outputting the result in a structured object.
511
-
512
- You can create `Pipeline` objects for the following down-stream tasks:
513
-
514
- - `feature-extraction`: Generates a tensor representation for the input sequence
515
- - `ner`: Generates named entity mapping for each word in the input sequence.
516
- - `sentiment-analysis`: Gives the polarity (positive / negative) of the whole input sequence.
517
- - `question-answering`: Provided some context and a question refering to the context, it will extract the answer to the question
518
- in the context.
519
-
520
- ```python
521
- from transformers import pipeline
522
-
523
- # Allocate a pipeline for sentiment-analysis
524
- nlp = pipeline('sentiment-analysis')
525
- nlp('We are very happy to include pipeline into the transformers repository.')
526
- >>> {'label': 'POSITIVE', 'score': 0.99893874}
527
-
528
- # Allocate a pipeline for question-answering
529
- nlp = pipeline('question-answering')
530
- nlp({
531
- 'question': 'What is the name of the repository ?',
532
- 'context': 'Pipeline have been included in the huggingface/transformers repository'
533
- })
534
- >>> {'score': 0.28756016668193496, 'start': 35, 'end': 59, 'answer': 'huggingface/transformers'}
535
- ```
536
-
537
- ## Migrating from pytorch-transformers to transformers
538
-
539
- Here is a quick summary of what you should take care of when migrating from `pytorch-transformers` to `transformers`.
540
-
541
- ### Positional order of some models' keywords inputs (`attention_mask`, `token_type_ids`...) changed
542
-
543
- To be able to use Torchscript (see #1010, #1204 and #1195) the specific order of some models **keywords inputs** (`attention_mask`, `token_type_ids`...) has been changed.
544
-
545
- If you used to call the models with keyword names for keyword arguments, e.g. `model(inputs_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)`, this should not cause any change.
546
-
547
- If you used to call the models with positional inputs for keyword arguments, e.g. `model(inputs_ids, attention_mask, token_type_ids)`, you may have to double check the exact order of input arguments.
548
-
549
-
550
- ## Migrating from pytorch-pretrained-bert to transformers
551
-
552
- Here is a quick summary of what you should take care of when migrating from `pytorch-pretrained-bert` to `transformers`.
553
-
554
- ### Models always output `tuples`
555
-
556
- The main breaking change when migrating from `pytorch-pretrained-bert` to `transformers` is that every model's forward method always outputs a `tuple` with various elements depending on the model and the configuration parameters.
557
-
558
- The exact content of the tuples for each model is detailed in the models' docstrings and the [documentation](https://huggingface.co/transformers/).
559
-
560
- In pretty much every case, you will be fine by taking the first element of the output as the output you previously used in `pytorch-pretrained-bert`.
561
-
562
- Here is a `pytorch-pretrained-bert` to `transformers` conversion example for a `BertForSequenceClassification` classification model:
563
-
564
- ```python
565
- # Let's load our model
566
- model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
567
-
568
- # If you used to have this line in pytorch-pretrained-bert:
569
- loss = model(input_ids, labels=labels)
570
-
571
- # Now just use this line in transformers to extract the loss from the output tuple:
572
- outputs = model(input_ids, labels=labels)
573
- loss = outputs[0]
574
-
575
- # In transformers you can also have access to the logits:
576
- loss, logits = outputs[:2]
577
-
578
- # And even the attention weights if you configure the model to output them (and other outputs too, see the docstrings and documentation)
579
- model = BertForSequenceClassification.from_pretrained('bert-base-uncased', output_attentions=True)
580
- outputs = model(input_ids, labels=labels)
581
- loss, logits, attentions = outputs
582
- ```
583
-
584
- ### Using hidden states
585
-
586
- By enabling the configuration option `output_hidden_states`, it was possible to retrieve the last hidden states of the encoder. In `pytorch-transformers` as well as `transformers` the return value has changed slightly: `all_hidden_states` now also includes the hidden state of the embeddings in addition to those of the encoding layers. This allows users to easily access the embeddings final state.
587
-
588
- ### Serialization
589
-
590
- Breaking change in the `from_pretrained()` method:
591
-
592
- 1. Models are now set in evaluation mode by default when instantiated with the `from_pretrained()` method. To train them, don't forget to set them back in training mode (`model.train()`) to activate the dropout modules.
593
-
594
- 2. The additional `*input` and `**kwargs` arguments supplied to the `from_pretrained()` method used to be directly passed to the underlying model's class `__init__()` method. They are now used to update the model configuration attribute instead, which can break derived model classes built based on the previous `BertForSequenceClassification` examples. We are working on a way to mitigate this breaking change in [#866](https://github.com/huggingface/transformers/pull/866) by forwarding the the model's `__init__()` method (i) the provided positional arguments and (ii) the keyword arguments which do not match any configuration class attributes.
595
-
596
- Also, while not a breaking change, the serialization methods have been standardized and you probably should switch to the new method `save_pretrained(save_directory)` if you were using any other serialization method before.
597
-
598
- Here is an example:
599
-
600
- ```python
601
- ### Let's load a model and tokenizer
602
- model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
603
- tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
604
-
605
- ### Do some stuff to our model and tokenizer
606
- # Ex: add new tokens to the vocabulary and embeddings of our model
607
- tokenizer.add_tokens(['[SPECIAL_TOKEN_1]', '[SPECIAL_TOKEN_2]'])
608
- model.resize_token_embeddings(len(tokenizer))
609
- # Train our model
610
- train(model)
611
-
612
- ### Now let's save our model and tokenizer to a directory
613
- model.save_pretrained('./my_saved_model_directory/')
614
- tokenizer.save_pretrained('./my_saved_model_directory/')
615
-
616
- ### Reload the model and the tokenizer
617
- model = BertForSequenceClassification.from_pretrained('./my_saved_model_directory/')
618
- tokenizer = BertTokenizer.from_pretrained('./my_saved_model_directory/')
619
- ```
620
-
621
- ### Optimizers: BertAdam & OpenAIAdam are now AdamW, schedules are standard PyTorch schedules
622
-
623
- The two optimizers previously included, `BertAdam` and `OpenAIAdam`, have been replaced by a single `AdamW` optimizer which has a few differences:
624
-
625
- - it only implements weights decay correction,
626
- - schedules are now externals (see below),
627
- - gradient clipping is now also external (see below).
628
-
629
- The new optimizer `AdamW` matches PyTorch `Adam` optimizer API and let you use standard PyTorch or apex methods for the schedule and clipping.
630
-
631
- The schedules are now standard [PyTorch learning rate schedulers](https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate) and not part of the optimizer anymore.
632
-
633
- Here is a conversion examples from `BertAdam` with a linear warmup and decay schedule to `AdamW` and the same schedule:
634
-
635
- ```python
636
- # Parameters:
637
- lr = 1e-3
638
- max_grad_norm = 1.0
639
- num_training_steps = 1000
640
- num_warmup_steps = 100
641
- warmup_proportion = float(num_warmup_steps) / float(num_training_steps) # 0.1
642
-
643
- ### Previously BertAdam optimizer was instantiated like this:
644
- optimizer = BertAdam(model.parameters(), lr=lr, schedule='warmup_linear', warmup=warmup_proportion, t_total=num_training_steps)
645
- ### and used like this:
646
- for batch in train_data:
647
- loss = model(batch)
648
- loss.backward()
649
- optimizer.step()
650
-
651
- ### In Transformers, optimizer and schedules are splitted and instantiated like this:
652
- optimizer = AdamW(model.parameters(), lr=lr, correct_bias=False) # To reproduce BertAdam specific behavior set correct_bias=False
653
- scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps) # PyTorch scheduler
654
- ### and used like this:
655
- for batch in train_data:
656
- model.train()
657
- loss = model(batch)
658
- loss.backward()
659
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm) # Gradient clipping is not in AdamW anymore (so you can use amp without issue)
660
- optimizer.step()
661
- scheduler.step()
662
- optimizer.zero_grad()
663
- ```
664
-
665
- ## Citation
666
-
667
- We now have a paper you can cite for the 🤗 Transformers library:
668
- ```
669
- @article{Wolf2019HuggingFacesTS,
670
- title={HuggingFace's Transformers: State-of-the-art Natural Language Processing},
671
- author={Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and R'emi Louf and Morgan Funtowicz and Jamie Brew},
672
- journal={ArXiv},
673
- year={2019},
674
- volume={abs/1910.03771}
675
- }
676
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/deploy_multi_version_doc.sh DELETED
@@ -1,23 +0,0 @@
1
- cd docs
2
-
3
- function deploy_doc(){
4
- echo "Creating doc at commit $1 and pushing to folder $2"
5
- git checkout $1
6
- if [ ! -z "$2" ]
7
- then
8
- echo "Pushing version" $2
9
- make clean && make html && scp -r -oStrictHostKeyChecking=no _build/html $doc:$dir/$2
10
- else
11
- echo "Pushing master"
12
- make clean && make html && scp -r -oStrictHostKeyChecking=no _build/html/* $doc:$dir
13
- fi
14
- }
15
-
16
- deploy_doc "master"
17
- deploy_doc "b33a385" v1.0.0
18
- deploy_doc "fe02e45" v1.1.0
19
- deploy_doc "89fd345" v1.2.0
20
- deploy_doc "fc9faa8" v2.0.0
21
- deploy_doc "3ddce1d" v2.1.1
22
- deploy_doc "f2f3294" v2.2.0
23
- deploy_doc "d0f8b9a" v2.3.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docker/Dockerfile DELETED
@@ -1,7 +0,0 @@
1
- FROM pytorch/pytorch:latest
2
-
3
- RUN git clone https://github.com/NVIDIA/apex.git && cd apex && python setup.py install --cuda_ext --cpp_ext
4
-
5
- RUN pip install transformers
6
-
7
- WORKDIR /workspace
 
 
 
 
 
 
 
 
server/transformers/docs/Makefile DELETED
@@ -1,19 +0,0 @@
1
- # Minimal makefile for Sphinx documentation
2
- #
3
-
4
- # You can set these variables from the command line.
5
- SPHINXOPTS =
6
- SPHINXBUILD = sphinx-build
7
- SOURCEDIR = source
8
- BUILDDIR = _build
9
-
10
- # Put it first so that "make" without argument is like "make help".
11
- help:
12
- @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
13
-
14
- .PHONY: help Makefile
15
-
16
- # Catch-all target: route all unknown targets to Sphinx using the new
17
- # "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
18
- %: Makefile
19
- @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/README.md DELETED
@@ -1,67 +0,0 @@
1
- # Generating the documentation
2
-
3
- To generate the documentation, you first have to build it. Several packages are necessary to build the doc,
4
- you can install them with the following command, at the root of the code repository:
5
-
6
- ```bash
7
- pip install -e ".[docs]"
8
- ```
9
-
10
- ## Packages installed
11
-
12
- Here's an overview of all the packages installed. If you ran the previous command installing all packages from
13
- `requirements.txt`, you do not need to run the following commands.
14
-
15
- Building it requires the package `sphinx` that you can
16
- install using:
17
-
18
- ```bash
19
- pip install -U sphinx
20
- ```
21
-
22
- You would also need the custom installed [theme](https://github.com/readthedocs/sphinx_rtd_theme) by
23
- [Read The Docs](https://readthedocs.org/). You can install it using the following command:
24
-
25
- ```bash
26
- pip install sphinx_rtd_theme
27
- ```
28
-
29
- The third necessary package is the `recommonmark` package to accept Markdown as well as Restructured text:
30
-
31
- ```bash
32
- pip install recommonmark
33
- ```
34
-
35
- ## Building the documentation
36
-
37
- Make sure that there is a symlink from the `example` file (in /examples) inside the source folder. Run the following
38
- command to generate it:
39
-
40
- ```bash
41
- ln -s ../../examples/README.md examples.md
42
- ```
43
-
44
- Once you have setup `sphinx`, you can build the documentation by running the following command in the `/docs` folder:
45
-
46
- ```bash
47
- make html
48
- ```
49
-
50
- ---
51
- **NOTE**
52
-
53
- If you are adding/removing elements from the toc-tree or from any structural item, it is recommended to clean the build
54
- directory before rebuilding. Run the following command to clean and build:
55
-
56
- ```bash
57
- make clean && make html
58
- ```
59
-
60
- ---
61
-
62
- It should build the static app that will be available under `/docs/_build/html`
63
-
64
- ## Adding a new element to the tree (toc-tree)
65
-
66
- Accepted files are reStructuredText (.rst) and Markdown (.md). Create a file with its extension and put it
67
- in the source directory. You can then link it to the toc-tree by putting the filename without the extension.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/_static/css/Calibre-Light.ttf DELETED
Binary file (62.5 kB)
 
server/transformers/docs/source/_static/css/Calibre-Medium.otf DELETED
Binary file (47.9 kB)
 
server/transformers/docs/source/_static/css/Calibre-Regular.otf DELETED
Binary file (49.9 kB)
 
server/transformers/docs/source/_static/css/Calibre-Thin.otf DELETED
Binary file (46.7 kB)
 
server/transformers/docs/source/_static/css/code-snippets.css DELETED
@@ -1,12 +0,0 @@
1
-
2
- .highlight .c1, .highlight .sd{
3
- color: #999
4
- }
5
-
6
- .highlight .nn, .highlight .k, .highlight .s1, .highlight .nb, .highlight .bp, .highlight .kc {
7
- color: #FB8D68;
8
- }
9
-
10
- .highlight .kn, .highlight .nv, .highlight .s2, .highlight .ow {
11
- color: #6670FF;
12
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/_static/css/huggingface.css DELETED
@@ -1,196 +0,0 @@
1
- /* The literal code blocks */
2
- .rst-content tt.literal, .rst-content tt.literal, .rst-content code.literal {
3
- color: #6670FF;
4
- }
5
-
6
- /* To keep the logo centered */
7
- .wy-side-scroll {
8
- width: auto;
9
- font-size: 20px;
10
- }
11
-
12
- /* The div that holds the Hugging Face logo */
13
- .HuggingFaceDiv {
14
- width: 100%
15
- }
16
-
17
- /* The research field on top of the toc tree */
18
- .wy-side-nav-search{
19
- background-color: #6670FF;
20
- }
21
-
22
- /* The toc tree */
23
- .wy-nav-side{
24
- background-color: #6670FF;
25
- }
26
-
27
- /* The selected items in the toc tree */
28
- .wy-menu-vertical li.current{
29
- background-color: #A6B0FF;
30
- }
31
-
32
- /* When a list item that does belong to the selected block from the toc tree is hovered */
33
- .wy-menu-vertical li.current a:hover{
34
- background-color: #B6C0FF;
35
- }
36
-
37
- /* When a list item that does NOT belong to the selected block from the toc tree is hovered. */
38
- .wy-menu-vertical li a:hover{
39
- background-color: #A7AFFB;
40
- }
41
-
42
- /* The text items on the toc tree */
43
- .wy-menu-vertical a {
44
- color: #FFFFDD;
45
- font-family: Calibre-Light, sans-serif;
46
- }
47
- .wy-menu-vertical header, .wy-menu-vertical p.caption{
48
- color: white;
49
- font-family: Calibre-Light, sans-serif;
50
- }
51
-
52
- /* The color inside the selected toc tree block */
53
- .wy-menu-vertical li.toctree-l2 a, .wy-menu-vertical li.toctree-l3 a, .wy-menu-vertical li.toctree-l4 a {
54
- color: black;
55
- }
56
-
57
- /* Inside the depth-2 selected toc tree block */
58
- .wy-menu-vertical li.toctree-l2.current>a {
59
- background-color: #B6C0FF
60
- }
61
- .wy-menu-vertical li.toctree-l2.current li.toctree-l3>a {
62
- background-color: #C6D0FF
63
- }
64
-
65
- /* Inside the depth-3 selected toc tree block */
66
- .wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{
67
- background-color: #D6E0FF
68
- }
69
-
70
- /* Inside code snippets */
71
- .rst-content dl:not(.docutils) dt{
72
- font-size: 15px;
73
- }
74
-
75
- /* Links */
76
- a {
77
- color: #6670FF;
78
- }
79
-
80
- /* Content bars */
81
- .rst-content dl:not(.docutils) dt {
82
- background-color: rgba(251, 141, 104, 0.1);
83
- border-right: solid 2px #FB8D68;
84
- border-left: solid 2px #FB8D68;
85
- color: #FB8D68;
86
- font-family: Calibre-Light, sans-serif;
87
- border-top: none;
88
- font-style: normal !important;
89
- }
90
-
91
- /* Expand button */
92
- .wy-menu-vertical li.toctree-l2 span.toctree-expand,
93
- .wy-menu-vertical li.on a span.toctree-expand, .wy-menu-vertical li.current>a span.toctree-expand,
94
- .wy-menu-vertical li.toctree-l3 span.toctree-expand{
95
- color: black;
96
- }
97
-
98
- /* Max window size */
99
- .wy-nav-content{
100
- max-width: 1200px;
101
- }
102
-
103
- /* Mobile header */
104
- .wy-nav-top{
105
- background-color: #6670FF;
106
- }
107
-
108
-
109
- /* Source spans */
110
- .rst-content .viewcode-link, .rst-content .viewcode-back{
111
- color: #6670FF;
112
- font-size: 110%;
113
- letter-spacing: 2px;
114
- text-transform: uppercase;
115
- }
116
-
117
- /* It would be better for table to be visible without horizontal scrolling */
118
- .wy-table-responsive table td, .wy-table-responsive table th{
119
- white-space: normal;
120
- }
121
-
122
- .footer {
123
- margin-top: 20px;
124
- }
125
-
126
- .footer__Social {
127
- display: flex;
128
- flex-direction: row;
129
- }
130
-
131
- .footer__CustomImage {
132
- margin: 2px 5px 0 0;
133
- }
134
-
135
- /* class and method names in doc */
136
- .rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) tt.descclassname, .rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) code.descname, .rst-content dl:not(.docutils) tt.descclassname, .rst-content dl:not(.docutils) code.descclassname{
137
- font-family: Calibre, sans-serif;
138
- font-size: 20px !important;
139
- }
140
-
141
- /* class name in doc*/
142
- .rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) code.descname{
143
- margin-right: 10px;
144
- font-family: Calibre-Medium, sans-serif;
145
- }
146
-
147
- /* Method and class parameters */
148
- .sig-param{
149
- line-height: 23px;
150
- }
151
-
152
- /* Class introduction "class" string at beginning */
153
- .rst-content dl:not(.docutils) .property{
154
- font-size: 18px;
155
- color: black;
156
- }
157
-
158
-
159
- /* FONTS */
160
- body{
161
- font-family: Calibre, sans-serif;
162
- font-size: 16px;
163
- }
164
-
165
- h1 {
166
- font-family: Calibre-Thin, sans-serif;
167
- font-size: 70px;
168
- }
169
-
170
- h2, .rst-content .toctree-wrapper p.caption, h3, h4, h5, h6, legend{
171
- font-family: Calibre-Medium, sans-serif;
172
- }
173
-
174
- @font-face {
175
- font-family: Calibre-Medium;
176
- src: url(./Calibre-Medium.otf);
177
- font-weight:400;
178
- }
179
-
180
- @font-face {
181
- font-family: Calibre;
182
- src: url(./Calibre-Regular.otf);
183
- font-weight:400;
184
- }
185
-
186
- @font-face {
187
- font-family: Calibre-Light;
188
- src: url(./Calibre-Light.ttf);
189
- font-weight:400;
190
- }
191
-
192
- @font-face {
193
- font-family: Calibre-Thin;
194
- src: url(./Calibre-Thin.otf);
195
- font-weight:400;
196
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/_static/js/custom.js DELETED
@@ -1,79 +0,0 @@
1
- function addIcon() {
2
- const huggingFaceLogo = "https://huggingface.co/landing/assets/transformers-docs/huggingface_logo.svg";
3
- const image = document.createElement("img");
4
- image.setAttribute("src", huggingFaceLogo);
5
-
6
- const div = document.createElement("div");
7
- div.appendChild(image);
8
- div.style.textAlign = 'center';
9
- div.style.paddingTop = '30px';
10
- div.style.backgroundColor = '#6670FF';
11
-
12
- const scrollDiv = document.querySelector(".wy-side-scroll");
13
- scrollDiv.prepend(div);
14
- }
15
-
16
- function addCustomFooter() {
17
- const customFooter = document.createElement("div");
18
- const questionOrIssue = document.createElement("div");
19
- questionOrIssue.innerHTML = "Stuck? Read our <a href='https://medium.com/huggingface'>Blog posts</a> or <a href='https://github.com/huggingface/transformers'>Create an issue</a>";
20
- customFooter.appendChild(questionOrIssue);
21
- customFooter.classList.add("footer");
22
-
23
- const social = document.createElement("div");
24
- social.classList.add("footer__Social");
25
-
26
- const imageDetails = [
27
- { link: "https://huggingface.co", imageLink: "https://huggingface.co/landing/assets/transformers-docs/website.svg" },
28
- { link: "https://twitter.com/huggingface", imageLink: "https://huggingface.co/landing/assets/transformers-docs/twitter.svg" },
29
- { link: "https://github.com/huggingface", imageLink: "https://huggingface.co/landing/assets/transformers-docs/github.svg" },
30
- { link: "https://www.linkedin.com/company/huggingface/", imageLink: "https://huggingface.co/landing/assets/transformers-docs/linkedin.svg" }
31
- ];
32
-
33
- imageDetails.forEach(imageLinks => {
34
- const link = document.createElement("a");
35
- const image = document.createElement("img");
36
- image.src = imageLinks.imageLink;
37
- link.href = imageLinks.link;
38
- image.style.width = "30px";
39
- image.classList.add("footer__CustomImage");
40
- link.appendChild(image);
41
- social.appendChild(link);
42
- });
43
-
44
- customFooter.appendChild(social);
45
- document.querySelector("footer").appendChild(customFooter);
46
- }
47
-
48
- function addGithubButton() {
49
- const div = `
50
- <div class="github-repo">
51
- <a
52
- class="github-button"
53
- href="https://github.com/huggingface/transformers" data-size="large" data-show-count="true" aria-label="Star huggingface/pytorch-transformers on GitHub">
54
- Star
55
- </a>
56
- </div>
57
- `;
58
- document.querySelector(".wy-side-nav-search .icon-home").insertAdjacentHTML('afterend', div);
59
- }
60
-
61
- /*!
62
- * github-buttons v2.2.10
63
- * (c) 2019 なつき
64
- * @license BSD-2-Clause
65
- */
66
- /**
67
- * modified to run programmatically
68
- */
69
- function parseGithubButtons (){"use strict";var e=window.document,t=e.location,o=window.encodeURIComponent,r=window.decodeURIComponent,n=window.Math,a=window.HTMLElement,i=window.XMLHttpRequest,l="https://unpkg.com/[email protected]/dist/buttons.html",c=i&&i.prototype&&"withCredentials"in i.prototype,d=c&&a&&a.prototype.attachShadow&&!a.prototype.attachShadow.prototype,s=function(e,t,o){e.addEventListener?e.addEventListener(t,o):e.attachEvent("on"+t,o)},u=function(e,t,o){e.removeEventListener?e.removeEventListener(t,o):e.detachEvent("on"+t,o)},h=function(e,t,o){var r=function(n){return u(e,t,r),o(n)};s(e,t,r)},f=function(e,t,o){var r=function(n){if(t.test(e.readyState))return u(e,"readystatechange",r),o(n)};s(e,"readystatechange",r)},p=function(e){return function(t,o,r){var n=e.createElement(t);if(o)for(var a in o){var i=o[a];null!=i&&(null!=n[a]?n[a]=i:n.setAttribute(a,i))}if(r)for(var l=0,c=r.length;l<c;l++){var d=r[l];n.appendChild("string"==typeof d?e.createTextNode(d):d)}return n}},g=p(e),b=function(e){var t;return function(){t||(t=1,e.apply(this,arguments))}},m="body{margin:0}a{color:#24292e;text-decoration:none;outline:0}.octicon{display:inline-block;vertical-align:text-top;fill:currentColor}.widget{ display:inline-block;overflow:hidden;font-family:-apple-system, BlinkMacSystemFont, \"Segoe UI\", Helvetica, Arial, sans-serif;font-size:0;white-space:nowrap;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none}.btn,.social-count{display:inline-block;height:14px;padding:2px 5px;font-size:11px;font-weight:600;line-height:14px;vertical-align:bottom;cursor:pointer;border:1px solid #c5c9cc;border-radius:0.25em}.btn{background-color:#eff3f6;background-image:-webkit-linear-gradient(top, #fafbfc, #eff3f6 90%);background-image:-moz-linear-gradient(top, #fafbfc, #eff3f6 90%);background-image:linear-gradient(180deg, #fafbfc, #eff3f6 90%);background-position:-1px -1px;background-repeat:repeat-x;background-size:110% 110%;border-color:rgba(27,31,35,0.2);-ms-filter:\"progid:DXImageTransform.Microsoft.Gradient(startColorstr='#FFFAFBFC', endColorstr='#FFEEF2F5')\";*filter:progid:DXImageTransform.Microsoft.Gradient(startColorstr='#FFFAFBFC', endColorstr='#FFEEF2F5')}.btn:active{background-color:#e9ecef;background-image:none;border-color:#a5a9ac;border-color:rgba(27,31,35,0.35);box-shadow:inset 0 0.15em 0.3em rgba(27,31,35,0.15)}.btn:focus,.btn:hover{background-color:#e6ebf1;background-image:-webkit-linear-gradient(top, #f0f3f6, #e6ebf1 90%);background-image:-moz-linear-gradient(top, #f0f3f6, #e6ebf1 90%);background-image:linear-gradient(180deg, #f0f3f6, #e6ebf1 90%);border-color:#a5a9ac;border-color:rgba(27,31,35,0.35);-ms-filter:\"progid:DXImageTransform.Microsoft.Gradient(startColorstr='#FFF0F3F6', endColorstr='#FFE5EAF0')\";*filter:progid:DXImageTransform.Microsoft.Gradient(startColorstr='#FFF0F3F6', endColorstr='#FFE5EAF0')}.social-count{position:relative;margin-left:5px;background-color:#fff}.social-count:focus,.social-count:hover{color:#0366d6}.social-count b,.social-count i{position:absolute;top:50%;left:0;display:block;width:0;height:0;margin:-4px 0 0 -4px;border:solid transparent;border-width:4px 4px 4px 0;_line-height:0;_border-top-color:red !important;_border-bottom-color:red !important;_border-left-color:red !important;_filter:chroma(color=red)}.social-count b{border-right-color:#c5c9cc}.social-count i{margin-left:-3px;border-right-color:#fff}.lg .btn,.lg .social-count{height:16px;padding:5px 10px;font-size:12px;line-height:16px}.lg .social-count{margin-left:6px}.lg .social-count b,.lg .social-count i{margin:-5px 0 0 -5px;border-width:5px 5px 5px 0}.lg .social-count i{margin-left:-4px}\n",v={"mark-github":{width:16,height:16,path:'<path fill-rule="evenodd" d="M8 0C3.58 0 0 3.58 0 8c0 3.54 2.29 6.53 5.47 7.59.4.07.55-.17.55-.38 0-.19-.01-.82-.01-1.49-2.01.37-2.53-.49-2.69-.94-.09-.23-.48-.94-.82-1.13-.28-.15-.68-.52-.01-.53.63-.01 1.08.58 1.23.82.72 1.21 1.87.87 2.33.66.07-.52.28-.87.51-1.07-1.78-.2-3.64-.89-3.64-3.95 0-.87.31-1.59.82-2.15-.08-.2-.36-1.02.08-2.12 0 0 .67-.21 2.2.82.64-.18 1.32-.27 2-.27.68 0 1.36.09 2 .27 1.53-1.04 2.2-.82 2.2-.82.44 1.1.16 1.92.08 2.12.51.56.82 1.27.82 2.15 0 3.07-1.87 3.75-3.65 3.95.29.25.54.73.54 1.48 0 1.07-.01 1.93-.01 2.2 0 .21.15.46.55.38A8.013 8.013 0 0 0 16 8c0-4.42-3.58-8-8-8z"/>'},eye:{width:16,height:16,path:'<path fill-rule="evenodd" d="M8.06 2C3 2 0 8 0 8s3 6 8.06 6C13 14 16 8 16 8s-3-6-7.94-6zM8 12c-2.2 0-4-1.78-4-4 0-2.2 1.8-4 4-4 2.22 0 4 1.8 4 4 0 2.22-1.78 4-4 4zm2-4c0 1.11-.89 2-2 2-1.11 0-2-.89-2-2 0-1.11.89-2 2-2 1.11 0 2 .89 2 2z"/>'},star:{width:14,height:16,path:'<path fill-rule="evenodd" d="M14 6l-4.9-.64L7 1 4.9 5.36 0 6l3.6 3.26L2.67 14 7 11.67 11.33 14l-.93-4.74L14 6z"/>'},"repo-forked":{width:10,height:16,path:'<path fill-rule="evenodd" d="M8 1a1.993 1.993 0 0 0-1 3.72V6L5 8 3 6V4.72A1.993 1.993 0 0 0 2 1a1.993 1.993 0 0 0-1 3.72V6.5l3 3v1.78A1.993 1.993 0 0 0 5 15a1.993 1.993 0 0 0 1-3.72V9.5l3-3V4.72A1.993 1.993 0 0 0 8 1zM2 4.2C1.34 4.2.8 3.65.8 3c0-.65.55-1.2 1.2-1.2.65 0 1.2.55 1.2 1.2 0 .65-.55 1.2-1.2 1.2zm3 10c-.66 0-1.2-.55-1.2-1.2 0-.65.55-1.2 1.2-1.2.65 0 1.2.55 1.2 1.2 0 .65-.55 1.2-1.2 1.2zm3-10c-.66 0-1.2-.55-1.2-1.2 0-.65.55-1.2 1.2-1.2.65 0 1.2.55 1.2 1.2 0 .65-.55 1.2-1.2 1.2z"/>'},"issue-opened":{width:14,height:16,path:'<path fill-rule="evenodd" d="M7 2.3c3.14 0 5.7 2.56 5.7 5.7s-2.56 5.7-5.7 5.7A5.71 5.71 0 0 1 1.3 8c0-3.14 2.56-5.7 5.7-5.7zM7 1C3.14 1 0 4.14 0 8s3.14 7 7 7 7-3.14 7-7-3.14-7-7-7zm1 3H6v5h2V4zm0 6H6v2h2v-2z"/>'},"cloud-download":{width:16,height:16,path:'<path fill-rule="evenodd" d="M9 12h2l-3 3-3-3h2V7h2v5zm3-8c0-.44-.91-3-4.5-3C5.08 1 3 2.92 3 5 1.02 5 0 6.52 0 8c0 1.53 1 3 3 3h3V9.7H3C1.38 9.7 1.3 8.28 1.3 8c0-.17.05-1.7 1.7-1.7h1.3V5c0-1.39 1.56-2.7 3.2-2.7 2.55 0 3.13 1.55 3.2 1.8v1.2H12c.81 0 2.7.22 2.7 2.2 0 2.09-2.25 2.2-2.7 2.2h-2V11h2c2.08 0 4-1.16 4-3.5C16 5.06 14.08 4 12 4z"/>'}},w={},x=function(e,t,o){var r=p(e.ownerDocument),n=e.appendChild(r("style",{type:"text/css"}));n.styleSheet?n.styleSheet.cssText=m:n.appendChild(e.ownerDocument.createTextNode(m));var a,l,d=r("a",{className:"btn",href:t.href,target:"_blank",innerHTML:(a=t["data-icon"],l=/^large$/i.test(t["data-size"])?16:14,a=(""+a).toLowerCase().replace(/^octicon-/,""),{}.hasOwnProperty.call(v,a)||(a="mark-github"),'<svg version="1.1" width="'+l*v[a].width/v[a].height+'" height="'+l+'" viewBox="0 0 '+v[a].width+" "+v[a].height+'" class="octicon octicon-'+a+'" aria-hidden="true">'+v[a].path+"</svg>"),"aria-label":t["aria-label"]||void 0},[" ",r("span",{},[t["data-text"]||""])]);/\.github\.com$/.test("."+d.hostname)?/^https?:\/\/((gist\.)?github\.com\/[^\/?#]+\/[^\/?#]+\/archive\/|github\.com\/[^\/?#]+\/[^\/?#]+\/releases\/download\/|codeload\.github\.com\/)/.test(d.href)&&(d.target="_top"):(d.href="#",d.target="_self");var u,h,g,x,y=e.appendChild(r("div",{className:"widget"+(/^large$/i.test(t["data-size"])?" lg":"")},[d]));/^(true|1)$/i.test(t["data-show-count"])&&"github.com"===d.hostname&&(u=d.pathname.replace(/^(?!\/)/,"/").match(/^\/([^\/?#]+)(?:\/([^\/?#]+)(?:\/(?:(subscription)|(fork)|(issues)|([^\/?#]+)))?)?(?:[\/?#]|$)/))&&!u[6]?(u[2]?(h="/repos/"+u[1]+"/"+u[2],u[3]?(x="subscribers_count",g="watchers"):u[4]?(x="forks_count",g="network"):u[5]?(x="open_issues_count",g="issues"):(x="stargazers_count",g="stargazers")):(h="/users/"+u[1],g=x="followers"),function(e,t){var o=w[e]||(w[e]=[]);if(!(o.push(t)>1)){var r=b(function(){for(delete w[e];t=o.shift();)t.apply(null,arguments)});if(c){var n=new i;s(n,"abort",r),s(n,"error",r),s(n,"load",function(){var e;try{e=JSON.parse(n.responseText)}catch(e){return void r(e)}r(200!==n.status,e)}),n.open("GET",e),n.send()}else{var a=this||window;a._=function(e){a._=null,r(200!==e.meta.status,e.data)};var l=p(a.document)("script",{async:!0,src:e+(/\?/.test(e)?"&":"?")+"callback=_"}),d=function(){a._&&a._({meta:{}})};s(l,"load",d),s(l,"error",d),l.readyState&&f(l,/de|m/,d),a.document.getElementsByTagName("head")[0].appendChild(l)}}}.call(this,"https://api.github.com"+h,function(e,t){if(!e){var n=t[x];y.appendChild(r("a",{className:"social-count",href:t.html_url+"/"+g,target:"_blank","aria-label":n+" "+x.replace(/_count$/,"").replace("_"," ").slice(0,n<2?-1:void 0)+" on GitHub"},[r("b"),r("i"),r("span",{},[(""+n).replace(/\B(?=(\d{3})+(?!\d))/g,",")])]))}o&&o(y)})):o&&o(y)},y=window.devicePixelRatio||1,C=function(e){return(y>1?n.ceil(n.round(e*y)/y*2)/2:n.ceil(e))||0},F=function(e,t){e.style.width=t[0]+"px",e.style.height=t[1]+"px"},k=function(t,r){if(null!=t&&null!=r)if(t.getAttribute&&(t=function(e){for(var t={href:e.href,title:e.title,"aria-label":e.getAttribute("aria-label")},o=["icon","text","size","show-count"],r=0,n=o.length;r<n;r++){var a="data-"+o[r];t[a]=e.getAttribute(a)}return null==t["data-text"]&&(t["data-text"]=e.textContent||e.innerText),t}(t)),d){var a=g("span",{title:t.title||void 0});x(a.attachShadow({mode:"closed"}),t,function(){r(a)})}else{var i=g("iframe",{src:"javascript:0",title:t.title||void 0,allowtransparency:!0,scrolling:"no",frameBorder:0});F(i,[0,0]),i.style.border="none";var c=function(){var a,d=i.contentWindow;try{a=d.document.body}catch(t){return void e.body.appendChild(i.parentNode.removeChild(i))}u(i,"load",c),x.call(d,a,t,function(e){var a=function(e){var t=e.offsetWidth,o=e.offsetHeight;if(e.getBoundingClientRect){var r=e.getBoundingClientRect();t=n.max(t,C(r.width)),o=n.max(o,C(r.height))}return[t,o]}(e);i.parentNode.removeChild(i),h(i,"load",function(){F(i,a)}),i.src=l+"#"+(i.name=function(e){var t=[];for(var r in e){var n=e[r];null!=n&&t.push(o(r)+"="+o(n))}return t.join("&")}(t)),r(i)})};s(i,"load",c),e.body.appendChild(i)}};t.protocol+"//"+t.host+t.pathname===l?x(e.body,function(e){for(var t={},o=e.split("&"),n=0,a=o.length;n<a;n++){var i=o[n];if(""!==i){var l=i.split("=");t[r(l[0])]=null!=l[1]?r(l.slice(1).join("=")):void 0}}return t}(window.name||t.hash.replace(/^#/,""))):function(t){if(/m/.test(e.readyState)||!/g/.test(e.readyState)&&!e.documentElement.doScroll)setTimeout(t);else if(e.addEventListener){var o=b(t);h(e,"DOMContentLoaded",o),h(window,"load",o)}else f(e,/m/,t)}(function(){for(var t=e.querySelectorAll?e.querySelectorAll("a.github-button"):function(){for(var t=[],o=e.getElementsByTagName("a"),r=0,n=o.length;r<n;r++)~(" "+o[r].className+" ").replace(/[ \t\n\f\r]+/g," ").indexOf(" github-button ")&&t.push(o[r]);return t}(),o=0,r=t.length;o<r;o++)!function(e){k(e,function(t){e.parentNode.replaceChild(t,e)})}(t[o])})};
70
-
71
-
72
- function onLoad() {
73
- addIcon();
74
- addCustomFooter();
75
- addGithubButton();
76
- parseGithubButtons();
77
- }
78
-
79
- window.addEventListener("load", onLoad);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/_static/js/huggingface_logo.svg DELETED
server/transformers/docs/source/benchmarks.md DELETED
@@ -1,54 +0,0 @@
1
- # Benchmarks
2
-
3
- This section is dedicated to the Benchmarks done by the library, both by maintainers, contributors and users. These
4
- benchmark will help keep track of the preformance improvements that are brought to our models across versions.
5
-
6
- ## Benchmarking all models for inference
7
-
8
- As of version 2.1 we have benchmarked all models for inference, across many different settings: using PyTorch, with
9
- and without TorchScript, using TensorFlow, with and without XLA. All of those tests were done across CPUs (except for
10
- TensorFlow XLA) and GPUs.
11
-
12
- The approach is detailed in the [following blogpost](https://medium.com/huggingface/benchmarking-transformers-pytorch-and-tensorflow-e2917fb891c2)
13
-
14
- The results are available [here](https://docs.google.com/spreadsheets/d/1sryqufw2D0XlUH4sq3e9Wnxu5EAQkaohzrJbd5HdQ_w/edit?usp=sharing).
15
-
16
- ## TF2 with mixed precision, XLA, Distribution (@tlkh)
17
-
18
- This work was done by [Timothy Liu](https://github.com/tlkh).
19
-
20
- There are very positive results to be gained from the various TensorFlow 2.0 features:
21
-
22
- - Automatic Mixed Precision (AMP)
23
- - XLA compiler
24
- - Distribution strategies (multi-GPU)
25
-
26
- The benefits are listed here (tested on CoLA, MRPC, SST-2):
27
-
28
- - AMP: Between 1.4x to 1.6x decrease in overall time without change in batch size
29
- - AMP+XLA: Up to 2.5x decrease in overall time on SST-2 (larger dataset)
30
- - Distribution: Between 1.4x to 3.4x decrease in overall time on 4xV100
31
- - Combined: Up to 5.7x decrease in overall training time, or 9.1x training throughput
32
-
33
- The model quality (measured by the validation accuracy) fluctuates slightly. Taking an average of 4 training runs
34
- on a single GPU gives the following results:
35
-
36
- - CoLA: AMP results in slighter lower acc (0.820 vs 0.824)
37
- - MRPC: AMP results in lower acc (0.823 vs 0.835)
38
- - SST-2: AMP results in slighter lower acc (0.918 vs 0.922)
39
-
40
- However, in a distributed setting with 4xV100 (4x batch size), AMP can yield in better results:
41
-
42
- CoLA: AMP results in higher acc (0.828 vs 0.812)
43
- MRPC: AMP results in lower acc (0.817 vs 0.827)
44
- SST-2: AMP results in slightly lower acc (0.926 vs 0.929)
45
-
46
- The benchmark script is available [here](https://github.com/NVAITC/benchmarking/blob/master/tf2/bert_dist.py).
47
-
48
- Note: on some tasks (e.g. MRPC), the dataset is too small. The overhead due to the model compilation with XLA as well
49
- as the distribution strategy setup does not speed things up. The XLA compile time is also the reason why although throughput
50
- can increase a lot (e.g. 2.7x for single GPU), overall (end-to-end) training speed-up is not as fast (as low as 1.4x)
51
-
52
- The benefits as seen on SST-2 (larger dataset) is much clear.
53
-
54
- All results can be seen on this [Google Sheet](https://docs.google.com/spreadsheets/d/1538MN224EzjbRL239sqSiUy6YY-rAjHyXhTzz_Zptls/edit#gid=960868445).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/bertology.rst DELETED
@@ -1,18 +0,0 @@
1
- BERTology
2
- ---------
3
-
4
- There is a growing field of study concerned with investigating the inner working of large-scale transformers like BERT (that some call "BERTology"). Some good examples of this field are:
5
-
6
-
7
- * BERT Rediscovers the Classical NLP Pipeline by Ian Tenney, Dipanjan Das, Ellie Pavlick: https://arxiv.org/abs/1905.05950
8
- * Are Sixteen Heads Really Better than One? by Paul Michel, Omer Levy, Graham Neubig: https://arxiv.org/abs/1905.10650
9
- * What Does BERT Look At? An Analysis of BERT's Attention by Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D. Manning: https://arxiv.org/abs/1906.04341
10
-
11
- In order to help this new field develop, we have included a few additional features in the BERT/GPT/GPT-2 models to help people access the inner representations, mainly adapted from the great work of Paul Michel (https://arxiv.org/abs/1905.10650):
12
-
13
-
14
- * accessing all the hidden-states of BERT/GPT/GPT-2,
15
- * accessing all the attention weights for each head of BERT/GPT/GPT-2,
16
- * retrieving heads output values and gradients to be able to compute head importance score and prune head as explained in https://arxiv.org/abs/1905.10650.
17
-
18
- To help you understand and use these features, we have added a specific example script: `bertology.py <https://github.com/huggingface/transformers/blob/master/examples/run_bertology.py>`_ while extract information and prune a model pre-trained on GLUE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/conf.py DELETED
@@ -1,188 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- #
3
- # Configuration file for the Sphinx documentation builder.
4
- #
5
- # This file does only contain a selection of the most common options. For a
6
- # full list see the documentation:
7
- # http://www.sphinx-doc.org/en/master/config
8
-
9
- # -- Path setup --------------------------------------------------------------
10
-
11
- # If extensions (or modules to document with autodoc) are in another directory,
12
- # add these directories to sys.path here. If the directory is relative to the
13
- # documentation root, use os.path.abspath to make it absolute, like shown here.
14
- #
15
- import os
16
- import sys
17
- sys.path.insert(0, os.path.abspath('../../src'))
18
-
19
-
20
- # -- Project information -----------------------------------------------------
21
-
22
- project = u'transformers'
23
- copyright = u'2019, huggingface'
24
- author = u'huggingface'
25
-
26
- # The short X.Y version
27
- version = u''
28
- # The full version, including alpha/beta/rc tags
29
- release = u'2.3.0'
30
-
31
-
32
- # -- General configuration ---------------------------------------------------
33
-
34
- # If your documentation needs a minimal Sphinx version, state it here.
35
- #
36
- # needs_sphinx = '1.0'
37
-
38
- # Add any Sphinx extension module names here, as strings. They can be
39
- # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
40
- # ones.
41
- extensions = [
42
- 'sphinx.ext.autodoc',
43
- 'sphinx.ext.coverage',
44
- 'sphinx.ext.napoleon',
45
- 'recommonmark',
46
- 'sphinx.ext.viewcode',
47
- 'sphinx_markdown_tables'
48
- ]
49
-
50
- # Add any paths that contain templates here, relative to this directory.
51
- templates_path = ['_templates']
52
-
53
- # The suffix(es) of source filenames.
54
- # You can specify multiple suffix as a list of string:
55
- #
56
- source_suffix = ['.rst', '.md']
57
- # source_suffix = '.rst'
58
-
59
- # The master toctree document.
60
- master_doc = 'index'
61
-
62
- # The language for content autogenerated by Sphinx. Refer to documentation
63
- # for a list of supported languages.
64
- #
65
- # This is also used if you do content translation via gettext catalogs.
66
- # Usually you set "language" from the command line for these cases.
67
- language = None
68
-
69
- # List of patterns, relative to source directory, that match files and
70
- # directories to ignore when looking for source files.
71
- # This pattern also affects html_static_path and html_extra_path.
72
- exclude_patterns = [u'_build', 'Thumbs.db', '.DS_Store']
73
-
74
- # The name of the Pygments (syntax highlighting) style to use.
75
- pygments_style = None
76
-
77
-
78
- # -- Options for HTML output -------------------------------------------------
79
-
80
- # The theme to use for HTML and HTML Help pages. See the documentation for
81
- # a list of builtin themes.
82
- #
83
- html_theme = 'sphinx_rtd_theme'
84
-
85
- # Theme options are theme-specific and customize the look and feel of a theme
86
- # further. For a list of options available for each theme, see the
87
- # documentation.
88
- #
89
- html_theme_options = {
90
- 'analytics_id': 'UA-83738774-2'
91
- }
92
-
93
- # Add any paths that contain custom static files (such as style sheets) here,
94
- # relative to this directory. They are copied after the builtin static files,
95
- # so a file named "default.css" will overwrite the builtin "default.css".
96
- html_static_path = ['_static']
97
-
98
- # Custom sidebar templates, must be a dictionary that maps document names
99
- # to template names.
100
- #
101
- # The default sidebars (for documents that don't match any pattern) are
102
- # defined by theme itself. Builtin themes are using these templates by
103
- # default: ``['localtoc.html', 'relations.html', 'sourcelink.html',
104
- # 'searchbox.html']``.
105
- #
106
- # html_sidebars = {}
107
-
108
-
109
- # -- Options for HTMLHelp output ---------------------------------------------
110
-
111
- # Output file base name for HTML help builder.
112
- htmlhelp_basename = 'transformersdoc'
113
-
114
-
115
- # -- Options for LaTeX output ------------------------------------------------
116
-
117
- latex_elements = {
118
- # The paper size ('letterpaper' or 'a4paper').
119
- #
120
- # 'papersize': 'letterpaper',
121
-
122
- # The font size ('10pt', '11pt' or '12pt').
123
- #
124
- # 'pointsize': '10pt',
125
-
126
- # Additional stuff for the LaTeX preamble.
127
- #
128
- # 'preamble': '',
129
-
130
- # Latex figure (float) alignment
131
- #
132
- # 'figure_align': 'htbp',
133
- }
134
-
135
- # Grouping the document tree into LaTeX files. List of tuples
136
- # (source start file, target name, title,
137
- # author, documentclass [howto, manual, or own class]).
138
- latex_documents = [
139
- (master_doc, 'transformers.tex', u'transformers Documentation',
140
- u'huggingface', 'manual'),
141
- ]
142
-
143
-
144
- # -- Options for manual page output ------------------------------------------
145
-
146
- # One entry per manual page. List of tuples
147
- # (source start file, name, description, authors, manual section).
148
- man_pages = [
149
- (master_doc, 'transformers', u'transformers Documentation',
150
- [author], 1)
151
- ]
152
-
153
-
154
- # -- Options for Texinfo output ----------------------------------------------
155
-
156
- # Grouping the document tree into Texinfo files. List of tuples
157
- # (source start file, target name, title, author,
158
- # dir menu entry, description, category)
159
- texinfo_documents = [
160
- (master_doc, 'transformers', u'transformers Documentation',
161
- author, 'transformers', 'One line description of project.',
162
- 'Miscellaneous'),
163
- ]
164
-
165
-
166
- # -- Options for Epub output -------------------------------------------------
167
-
168
- # Bibliographic Dublin Core info.
169
- epub_title = project
170
-
171
- # The unique identifier of the text. This can be a ISBN number
172
- # or the project homepage.
173
- #
174
- # epub_identifier = ''
175
-
176
- # A unique identification for the text.
177
- #
178
- # epub_uid = ''
179
-
180
- # A list of files that should not be packed into the epub file.
181
- epub_exclude_files = ['search.html']
182
-
183
- def setup(app):
184
- app.add_stylesheet('css/huggingface.css')
185
- app.add_stylesheet('css/code-snippets.css')
186
- app.add_js_file('js/custom.js')
187
-
188
- # -- Extension configuration -------------------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/converting_tensorflow_models.rst DELETED
@@ -1,137 +0,0 @@
1
- Converting Tensorflow Checkpoints
2
- ================================================
3
-
4
- A command-line interface is provided to convert original Bert/GPT/GPT-2/Transformer-XL/XLNet/XLM checkpoints in models than be loaded using the ``from_pretrained`` methods of the library.
5
-
6
- .. note::
7
- Since 2.3.0 the conversion script is now part of the transformers CLI (**transformers-cli**)
8
- available in any transformers >= 2.3.0 installation.
9
-
10
- The documentation below reflects the **transformers-cli convert** command format.
11
-
12
- BERT
13
- ^^^^
14
-
15
- You can convert any TensorFlow checkpoint for BERT (in particular `the pre-trained models released by Google <https://github.com/google-research/bert#pre-trained-models>`_\ ) in a PyTorch save file by using the `convert_tf_checkpoint_to_pytorch.py <https://github.com/huggingface/transformers/blob/master/transformers/convert_tf_checkpoint_to_pytorch.py>`_ script.
16
-
17
- This CLI takes as input a TensorFlow checkpoint (three files starting with ``bert_model.ckpt``\ ) and the associated configuration file (\ ``bert_config.json``\ ), and creates a PyTorch model for this configuration, loads the weights from the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that can be imported using ``torch.load()`` (see examples in `run_bert_extract_features.py <https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/examples/run_bert_extract_features.py>`_\ , `run_bert_classifier.py <https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/examples/run_bert_classifier.py>`_ and `run_bert_squad.py <https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/examples/run_bert_squad.py>`_\ ).
18
-
19
- You only need to run this conversion script **once** to get a PyTorch model. You can then disregard the TensorFlow checkpoint (the three files starting with ``bert_model.ckpt``\ ) but be sure to keep the configuration file (\ ``bert_config.json``\ ) and the vocabulary file (\ ``vocab.txt``\ ) as these are needed for the PyTorch model too.
20
-
21
- To run this specific conversion script you will need to have TensorFlow and PyTorch installed (\ ``pip install tensorflow``\ ). The rest of the repository only requires PyTorch.
22
-
23
- Here is an example of the conversion process for a pre-trained ``BERT-Base Uncased`` model:
24
-
25
- .. code-block:: shell
26
-
27
- export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12
28
-
29
- <<<<<<< HEAD
30
- transformers-cli --model_type bert \
31
- =======
32
- transformers-cli convert --model_type bert \
33
- >>>>>>> bfec203d4ed95255619e7e2f28c9040744a16232
34
- --tf_checkpoint $BERT_BASE_DIR/bert_model.ckpt \
35
- --config $BERT_BASE_DIR/bert_config.json \
36
- --pytorch_dump_output $BERT_BASE_DIR/pytorch_model.bin
37
-
38
- You can download Google's pre-trained models for the conversion `here <https://github.com/google-research/bert#pre-trained-models>`__.
39
-
40
- OpenAI GPT
41
- ^^^^^^^^^^
42
-
43
- Here is an example of the conversion process for a pre-trained OpenAI GPT model, assuming that your NumPy checkpoint save as the same format than OpenAI pretrained model (see `here <https://github.com/openai/finetune-transformer-lm>`__\ )
44
-
45
- .. code-block:: shell
46
-
47
- export OPENAI_GPT_CHECKPOINT_FOLDER_PATH=/path/to/openai/pretrained/numpy/weights
48
-
49
- <<<<<<< HEAD
50
- transformers-cli --model_type gpt \
51
- =======
52
- transformers-cli convert --model_type gpt \
53
- >>>>>>> bfec203d4ed95255619e7e2f28c9040744a16232
54
- --tf_checkpoint $OPENAI_GPT_CHECKPOINT_FOLDER_PATH \
55
- --pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
56
- [--config OPENAI_GPT_CONFIG] \
57
- [--finetuning_task_name OPENAI_GPT_FINETUNED_TASK] \
58
-
59
-
60
- OpenAI GPT-2
61
- ^^^^^^^^^^^^
62
-
63
- Here is an example of the conversion process for a pre-trained OpenAI GPT-2 model (see `here <https://github.com/openai/gpt-2>`__\ )
64
-
65
- .. code-block:: shell
66
-
67
- export OPENAI_GPT2_CHECKPOINT_PATH=/path/to/gpt2/pretrained/weights
68
-
69
- <<<<<<< HEAD
70
- transformers-cli --model_type gpt2 \
71
- =======
72
- transformers-cli convert --model_type gpt2 \
73
- >>>>>>> bfec203d4ed95255619e7e2f28c9040744a16232
74
- --tf_checkpoint $OPENAI_GPT2_CHECKPOINT_PATH \
75
- --pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
76
- [--config OPENAI_GPT2_CONFIG] \
77
- [--finetuning_task_name OPENAI_GPT2_FINETUNED_TASK]
78
-
79
- Transformer-XL
80
- ^^^^^^^^^^^^^^
81
-
82
- Here is an example of the conversion process for a pre-trained Transformer-XL model (see `here <https://github.com/kimiyoung/transformer-xl/tree/master/tf#obtain-and-evaluate-pretrained-sota-models>`__\ )
83
-
84
- .. code-block:: shell
85
-
86
- export TRANSFO_XL_CHECKPOINT_FOLDER_PATH=/path/to/transfo/xl/checkpoint
87
-
88
- <<<<<<< HEAD
89
- transformers-cli --model_type transfo_xl \
90
- =======
91
- transformers-cli convert --model_type transfo_xl \
92
- >>>>>>> bfec203d4ed95255619e7e2f28c9040744a16232
93
- --tf_checkpoint $TRANSFO_XL_CHECKPOINT_FOLDER_PATH \
94
- --pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
95
- [--config TRANSFO_XL_CONFIG] \
96
- [--finetuning_task_name TRANSFO_XL_FINETUNED_TASK]
97
-
98
-
99
- XLNet
100
- ^^^^^
101
-
102
- Here is an example of the conversion process for a pre-trained XLNet model:
103
-
104
- .. code-block:: shell
105
-
106
- export TRANSFO_XL_CHECKPOINT_PATH=/path/to/xlnet/checkpoint
107
- export TRANSFO_XL_CONFIG_PATH=/path/to/xlnet/config
108
-
109
- <<<<<<< HEAD
110
- transformers-cli --model_type xlnet \
111
- =======
112
- transformers-cli convert --model_type xlnet \
113
- >>>>>>> bfec203d4ed95255619e7e2f28c9040744a16232
114
- --tf_checkpoint $TRANSFO_XL_CHECKPOINT_PATH \
115
- --config $TRANSFO_XL_CONFIG_PATH \
116
- --pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
117
- [--finetuning_task_name XLNET_FINETUNED_TASK] \
118
-
119
-
120
- XLM
121
- ^^^
122
-
123
- Here is an example of the conversion process for a pre-trained XLM model:
124
-
125
- .. code-block:: shell
126
-
127
- export XLM_CHECKPOINT_PATH=/path/to/xlm/checkpoint
128
-
129
- <<<<<<< HEAD
130
- transformers-cli --model_type xlm \
131
- =======
132
- transformers-cli convert --model_type xlm \
133
- >>>>>>> bfec203d4ed95255619e7e2f28c9040744a16232
134
- --tf_checkpoint $XLM_CHECKPOINT_PATH \
135
- --pytorch_dump_output $PYTORCH_DUMP_OUTPUT
136
- [--config XML_CONFIG] \
137
- [--finetuning_task_name XML_FINETUNED_TASK]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/examples.md DELETED
@@ -1,801 +0,0 @@
1
- # Examples
2
-
3
- In this section a few examples are put together. All of these examples work for several models, making use of the very
4
- similar API between the different models.
5
-
6
- **Important**
7
- To run the latest versions of the examples, you have to install from source and install some specific requirements for the examples.
8
- Execute the following steps in a new virtual environment:
9
-
10
- ```bash
11
- git clone https://github.com/huggingface/transformers
12
- cd transformers
13
- pip install .
14
- pip install -r ./examples/requirements.txt
15
- ```
16
-
17
- | Section | Description |
18
- |----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
19
- | [TensorFlow 2.0 models on GLUE](#TensorFlow-2.0-Bert-models-on-GLUE) | Examples running BERT TensorFlow 2.0 model on the GLUE tasks.
20
- | [Language Model fine-tuning](#language-model-fine-tuning) | Fine-tuning the library models for language modeling on a text dataset. Causal language modeling for GPT/GPT-2, masked language modeling for BERT/RoBERTa. |
21
- | [Language Generation](#language-generation) | Conditional text generation using the auto-regressive models of the library: GPT, GPT-2, Transformer-XL and XLNet. |
22
- | [GLUE](#glue) | Examples running BERT/XLM/XLNet/RoBERTa on the 9 GLUE tasks. Examples feature distributed training as well as half-precision. |
23
- | [SQuAD](#squad) | Using BERT/RoBERTa/XLNet/XLM for question answering, examples with distributed training. |
24
- | [Multiple Choice](#multiple-choice) | Examples running BERT/XLNet/RoBERTa on the SWAG/RACE/ARC tasks.
25
- | [Named Entity Recognition](#named-entity-recognition) | Using BERT for Named Entity Recognition (NER) on the CoNLL 2003 dataset, examples with distributed training. |
26
- | [XNLI](#xnli) | Examples running BERT/XLM on the XNLI benchmark. |
27
- | [Adversarial evaluation of model performances](#adversarial-evaluation-of-model-performances) | Testing a model with adversarial evaluation of natural language
28
- inference on the Heuristic Analysis for NLI Systems (HANS) dataset (McCoy et al., 2019.) |
29
-
30
- ## TensorFlow 2.0 Bert models on GLUE
31
-
32
- Based on the script [`run_tf_glue.py`](https://github.com/huggingface/transformers/blob/master/examples/run_tf_glue.py).
33
-
34
- Fine-tuning the library TensorFlow 2.0 Bert model for sequence classification on the MRPC task of the GLUE benchmark: [General Language Understanding Evaluation](https://gluebenchmark.com/).
35
-
36
- This script has an option for mixed precision (Automatic Mixed Precision / AMP) to run models on Tensor Cores (NVIDIA Volta/Turing GPUs) and future hardware and an option for XLA, which uses the XLA compiler to reduce model runtime.
37
- Options are toggled using `USE_XLA` or `USE_AMP` variables in the script.
38
- These options and the below benchmark are provided by @tlkh.
39
-
40
- Quick benchmarks from the script (no other modifications):
41
-
42
- | GPU | Mode | Time (2nd epoch) | Val Acc (3 runs) |
43
- | --------- | -------- | ----------------------- | ----------------------|
44
- | Titan V | FP32 | 41s | 0.8438/0.8281/0.8333 |
45
- | Titan V | AMP | 26s | 0.8281/0.8568/0.8411 |
46
- | V100 | FP32 | 35s | 0.8646/0.8359/0.8464 |
47
- | V100 | AMP | 22s | 0.8646/0.8385/0.8411 |
48
- | 1080 Ti | FP32 | 55s | - |
49
-
50
- Mixed precision (AMP) reduces the training time considerably for the same hardware and hyper-parameters (same batch size was used).
51
-
52
- ## Language model fine-tuning
53
-
54
- Based on the script [`run_lm_finetuning.py`](https://github.com/huggingface/transformers/blob/master/examples/run_lm_finetuning.py).
55
-
56
- Fine-tuning the library models for language modeling on a text dataset for GPT, GPT-2, BERT and RoBERTa (DistilBERT
57
- to be added soon). GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa
58
- are fine-tuned using a masked language modeling (MLM) loss.
59
-
60
- Before running the following example, you should get a file that contains text on which the language model will be
61
- fine-tuned. A good example of such text is the [WikiText-2 dataset](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/).
62
-
63
- We will refer to two different files: `$TRAIN_FILE`, which contains text for training, and `$TEST_FILE`, which contains
64
- text that will be used for evaluation.
65
-
66
- ### GPT-2/GPT and causal language modeling
67
-
68
- The following example fine-tunes GPT-2 on WikiText-2. We're using the raw WikiText-2 (no tokens were replaced before
69
- the tokenization). The loss here is that of causal language modeling.
70
-
71
- ```bash
72
- export TRAIN_FILE=/path/to/dataset/wiki.train.raw
73
- export TEST_FILE=/path/to/dataset/wiki.test.raw
74
-
75
- python run_lm_finetuning.py \
76
- --output_dir=output \
77
- --model_type=gpt2 \
78
- --model_name_or_path=gpt2 \
79
- --do_train \
80
- --train_data_file=$TRAIN_FILE \
81
- --do_eval \
82
- --eval_data_file=$TEST_FILE
83
- ```
84
-
85
- This takes about half an hour to train on a single K80 GPU and about one minute for the evaluation to run. It reaches
86
- a score of ~20 perplexity once fine-tuned on the dataset.
87
-
88
- ### RoBERTa/BERT and masked language modeling
89
-
90
- The following example fine-tunes RoBERTa on WikiText-2. Here too, we're using the raw WikiText-2. The loss is different
91
- as BERT/RoBERTa have a bidirectional mechanism; we're therefore using the same loss that was used during their
92
- pre-training: masked language modeling.
93
-
94
- In accordance to the RoBERTa paper, we use dynamic masking rather than static masking. The model may, therefore, converge
95
- slightly slower (over-fitting takes more epochs).
96
-
97
- We use the `--mlm` flag so that the script may change its loss function.
98
-
99
- ```bash
100
- export TRAIN_FILE=/path/to/dataset/wiki.train.raw
101
- export TEST_FILE=/path/to/dataset/wiki.test.raw
102
-
103
- python run_lm_finetuning.py \
104
- --output_dir=output \
105
- --model_type=roberta \
106
- --model_name_or_path=roberta-base \
107
- --do_train \
108
- --train_data_file=$TRAIN_FILE \
109
- --do_eval \
110
- --eval_data_file=$TEST_FILE \
111
- --mlm
112
- ```
113
-
114
- ## Language generation
115
-
116
- Based on the script [`run_generation.py`](https://github.com/huggingface/transformers/blob/master/examples/run_generation.py).
117
-
118
- Conditional text generation using the auto-regressive models of the library: GPT, GPT-2, Transformer-XL, XLNet, CTRL.
119
- A similar script is used for our official demo [Write With Transfomer](https://transformer.huggingface.co), where you
120
- can try out the different models available in the library.
121
-
122
- Example usage:
123
-
124
- ```bash
125
- python run_generation.py \
126
- --model_type=gpt2 \
127
- --model_name_or_path=gpt2
128
- ```
129
-
130
- ## GLUE
131
-
132
- Based on the script [`run_glue.py`](https://github.com/huggingface/transformers/blob/master/examples/run_glue.py).
133
-
134
- Fine-tuning the library models for sequence classification on the GLUE benchmark: [General Language Understanding
135
- Evaluation](https://gluebenchmark.com/). This script can fine-tune the following models: BERT, XLM, XLNet and RoBERTa.
136
-
137
- GLUE is made up of a total of 9 different tasks. We get the following results on the dev set of the benchmark with an
138
- uncased BERT base model (the checkpoint `bert-base-uncased`). All experiments ran on 8 V100 GPUs with a total train
139
- batch size of 24. Some of these tasks have a small dataset and training can lead to high variance in the results
140
- between different runs. We report the median on 5 runs (with different seeds) for each of the metrics.
141
-
142
- | Task | Metric | Result |
143
- |-------|------------------------------|-------------|
144
- | CoLA | Matthew's corr | 48.87 |
145
- | SST-2 | Accuracy | 91.74 |
146
- | MRPC | F1/Accuracy | 90.70/86.27 |
147
- | STS-B | Person/Spearman corr. | 91.39/91.04 |
148
- | QQP | Accuracy/F1 | 90.79/87.66 |
149
- | MNLI | Matched acc./Mismatched acc. | 83.70/84.83 |
150
- | QNLI | Accuracy | 89.31 |
151
- | RTE | Accuracy | 71.43 |
152
- | WNLI | Accuracy | 43.66 |
153
-
154
- Some of these results are significantly different from the ones reported on the test set
155
- of GLUE benchmark on the website. For QQP and WNLI, please refer to [FAQ #12](https://gluebenchmark.com/faq) on the webite.
156
-
157
- Before running anyone of these GLUE tasks you should download the
158
- [GLUE data](https://gluebenchmark.com/tasks) by running
159
- [this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
160
- and unpack it to some directory `$GLUE_DIR`.
161
-
162
- ```bash
163
- export GLUE_DIR=/path/to/glue
164
- export TASK_NAME=MRPC
165
-
166
- python run_glue.py \
167
- --model_type bert \
168
- --model_name_or_path bert-base-cased \
169
- --task_name $TASK_NAME \
170
- --do_train \
171
- --do_eval \
172
- --do_lower_case \
173
- --data_dir $GLUE_DIR/$TASK_NAME \
174
- --max_seq_length 128 \
175
- --per_gpu_train_batch_size 32 \
176
- --learning_rate 2e-5 \
177
- --num_train_epochs 3.0 \
178
- --output_dir /tmp/$TASK_NAME/
179
- ```
180
-
181
- where task name can be one of CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI, RTE, WNLI.
182
-
183
- The dev set results will be present within the text file `eval_results.txt` in the specified output_dir.
184
- In case of MNLI, since there are two separate dev sets (matched and mismatched), there will be a separate
185
- output folder called `/tmp/MNLI-MM/` in addition to `/tmp/MNLI/`.
186
-
187
- The code has not been tested with half-precision training with apex on any GLUE task apart from MRPC, MNLI,
188
- CoLA, SST-2. The following section provides details on how to run half-precision training with MRPC. With that being
189
- said, there shouldn’t be any issues in running half-precision training with the remaining GLUE tasks as well,
190
- since the data processor for each task inherits from the base class DataProcessor.
191
-
192
- ### MRPC
193
-
194
- #### Fine-tuning example
195
-
196
- The following examples fine-tune BERT on the Microsoft Research Paraphrase Corpus (MRPC) corpus and runs in less
197
- than 10 minutes on a single K-80 and in 27 seconds (!) on single tesla V100 16GB with apex installed.
198
-
199
- Before running anyone of these GLUE tasks you should download the
200
- [GLUE data](https://gluebenchmark.com/tasks) by running
201
- [this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
202
- and unpack it to some directory `$GLUE_DIR`.
203
-
204
- ```bash
205
- export GLUE_DIR=/path/to/glue
206
-
207
- python run_glue.py \
208
- --model_type bert \
209
- --model_name_or_path bert-base-cased \
210
- --task_name MRPC \
211
- --do_train \
212
- --do_eval \
213
- --do_lower_case \
214
- --data_dir $GLUE_DIR/MRPC/ \
215
- --max_seq_length 128 \
216
- --per_gpu_train_batch_size 32 \
217
- --learning_rate 2e-5 \
218
- --num_train_epochs 3.0 \
219
- --output_dir /tmp/mrpc_output/
220
- ```
221
-
222
- Our test ran on a few seeds with [the original implementation hyper-
223
- parameters](https://github.com/google-research/bert#sentence-and-sentence-pair-classification-tasks) gave evaluation
224
- results between 84% and 88%.
225
-
226
- #### Using Apex and mixed-precision
227
-
228
- Using Apex and 16 bit precision, the fine-tuning on MRPC only takes 27 seconds. First install
229
- [apex](https://github.com/NVIDIA/apex), then run the following example:
230
-
231
- ```bash
232
- export GLUE_DIR=/path/to/glue
233
-
234
- python run_glue.py \
235
- --model_type bert \
236
- --model_name_or_path bert-base-cased \
237
- --task_name MRPC \
238
- --do_train \
239
- --do_eval \
240
- --do_lower_case \
241
- --data_dir $GLUE_DIR/MRPC/ \
242
- --max_seq_length 128 \
243
- --per_gpu_train_batch_size 32 \
244
- --learning_rate 2e-5 \
245
- --num_train_epochs 3.0 \
246
- --output_dir /tmp/mrpc_output/ \
247
- --fp16
248
- ```
249
-
250
- #### Distributed training
251
-
252
- Here is an example using distributed training on 8 V100 GPUs. The model used is the BERT whole-word-masking and it
253
- reaches F1 > 92 on MRPC.
254
-
255
- ```bash
256
- export GLUE_DIR=/path/to/glue
257
-
258
- python -m torch.distributed.launch \
259
- --nproc_per_node 8 run_glue.py \
260
- --model_type bert \
261
- --model_name_or_path bert-base-cased \
262
- --task_name MRPC \
263
- --do_train \
264
- --do_eval \
265
- --do_lower_case \
266
- --data_dir $GLUE_DIR/MRPC/ \
267
- --max_seq_length 128 \
268
- --per_gpu_train_batch_size 8 \
269
- --learning_rate 2e-5 \
270
- --num_train_epochs 3.0 \
271
- --output_dir /tmp/mrpc_output/
272
- ```
273
-
274
- Training with these hyper-parameters gave us the following results:
275
-
276
- ```bash
277
- acc = 0.8823529411764706
278
- acc_and_f1 = 0.901702786377709
279
- eval_loss = 0.3418912578906332
280
- f1 = 0.9210526315789473
281
- global_step = 174
282
- loss = 0.07231863956341798
283
- ```
284
-
285
- ### MNLI
286
-
287
- The following example uses the BERT-large, uncased, whole-word-masking model and fine-tunes it on the MNLI task.
288
-
289
- ```bash
290
- export GLUE_DIR=/path/to/glue
291
-
292
- python -m torch.distributed.launch \
293
- --nproc_per_node 8 run_glue.py \
294
- --model_type bert \
295
- --model_name_or_path bert-base-cased \
296
- --task_name mnli \
297
- --do_train \
298
- --do_eval \
299
- --do_lower_case \
300
- --data_dir $GLUE_DIR/MNLI/ \
301
- --max_seq_length 128 \
302
- --per_gpu_train_batch_size 8 \
303
- --learning_rate 2e-5 \
304
- --num_train_epochs 3.0 \
305
- --output_dir output_dir \
306
- ```
307
-
308
- The results are the following:
309
-
310
- ```bash
311
- ***** Eval results *****
312
- acc = 0.8679706601466992
313
- eval_loss = 0.4911287787382479
314
- global_step = 18408
315
- loss = 0.04755385363816904
316
-
317
- ***** Eval results *****
318
- acc = 0.8747965825874695
319
- eval_loss = 0.45516540421714036
320
- global_step = 18408
321
- loss = 0.04755385363816904
322
- ```
323
-
324
- ## Multiple Choice
325
-
326
- Based on the script [`run_multiple_choice.py`]().
327
-
328
- #### Fine-tuning on SWAG
329
- Download [swag](https://github.com/rowanz/swagaf/tree/master/data) data
330
-
331
- ```bash
332
- #training on 4 tesla V100(16GB) GPUS
333
- export SWAG_DIR=/path/to/swag_data_dir
334
- python ./examples/run_multiple_choice.py \
335
- --model_type roberta \
336
- --task_name swag \
337
- --model_name_or_path roberta-base \
338
- --do_train \
339
- --do_eval \
340
- --do_lower_case \
341
- --data_dir $SWAG_DIR \
342
- --learning_rate 5e-5 \
343
- --num_train_epochs 3 \
344
- --max_seq_length 80 \
345
- --output_dir models_bert/swag_base \
346
- --per_gpu_eval_batch_size=16 \
347
- --per_gpu_train_batch_size=16 \
348
- --gradient_accumulation_steps 2 \
349
- --overwrite_output
350
- ```
351
- Training with the defined hyper-parameters yields the following results:
352
- ```
353
- ***** Eval results *****
354
- eval_acc = 0.8338998300509847
355
- eval_loss = 0.44457291918821606
356
- ```
357
-
358
- ## SQuAD
359
-
360
- Based on the script [`run_squad.py`](https://github.com/huggingface/transformers/blob/master/examples/run_squad.py).
361
-
362
- #### Fine-tuning BERT on SQuAD1.0
363
-
364
- This example code fine-tunes BERT on the SQuAD1.0 dataset. It runs in 24 min (with BERT-base) or 68 min (with BERT-large)
365
- on a single tesla V100 16GB. The data for SQuAD can be downloaded with the following links and should be saved in a
366
- $SQUAD_DIR directory.
367
-
368
- * [train-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json)
369
- * [dev-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json)
370
- * [evaluate-v1.1.py](https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py)
371
-
372
- And for SQuAD2.0, you need to download:
373
-
374
- - [train-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json)
375
- - [dev-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json)
376
- - [evaluate-v2.0.py](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/)
377
-
378
- ```bash
379
- export SQUAD_DIR=/path/to/SQUAD
380
-
381
- python run_squad.py \
382
- --model_type bert \
383
- --model_name_or_path bert-base-cased \
384
- --do_train \
385
- --do_eval \
386
- --do_lower_case \
387
- --train_file $SQUAD_DIR/train-v1.1.json \
388
- --predict_file $SQUAD_DIR/dev-v1.1.json \
389
- --per_gpu_train_batch_size 12 \
390
- --learning_rate 3e-5 \
391
- --num_train_epochs 2.0 \
392
- --max_seq_length 384 \
393
- --doc_stride 128 \
394
- --output_dir /tmp/debug_squad/
395
- ```
396
-
397
- Training with the previously defined hyper-parameters yields the following results:
398
-
399
- ```bash
400
- f1 = 88.52
401
- exact_match = 81.22
402
- ```
403
-
404
- #### Distributed training
405
-
406
-
407
- Here is an example using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD1.0:
408
-
409
- ```bash
410
- python -m torch.distributed.launch --nproc_per_node=8 run_squad.py \
411
- --model_type bert \
412
- --model_name_or_path bert-base-cased \
413
- --do_train \
414
- --do_eval \
415
- --do_lower_case \
416
- --train_file $SQUAD_DIR/train-v1.1.json \
417
- --predict_file $SQUAD_DIR/dev-v1.1.json \
418
- --learning_rate 3e-5 \
419
- --num_train_epochs 2 \
420
- --max_seq_length 384 \
421
- --doc_stride 128 \
422
- --output_dir ../models/wwm_uncased_finetuned_squad/ \
423
- --per_gpu_train_batch_size 24 \
424
- --gradient_accumulation_steps 12
425
- ```
426
-
427
- Training with the previously defined hyper-parameters yields the following results:
428
-
429
- ```bash
430
- f1 = 93.15
431
- exact_match = 86.91
432
- ```
433
-
434
- This fine-tuned model is available as a checkpoint under the reference
435
- `bert-large-uncased-whole-word-masking-finetuned-squad`.
436
-
437
- #### Fine-tuning XLNet on SQuAD
438
-
439
- This example code fine-tunes XLNet on both SQuAD1.0 and SQuAD2.0 dataset. See above to download the data for SQuAD .
440
-
441
- ##### Command for SQuAD1.0:
442
-
443
- ```bash
444
- export SQUAD_DIR=/path/to/SQUAD
445
-
446
- python /data/home/hlu/transformers/examples/run_squad.py \
447
- --model_type xlnet \
448
- --model_name_or_path xlnet-large-cased \
449
- --do_train \
450
- --do_eval \
451
- --do_lower_case \
452
- --train_file /data/home/hlu/notebooks/NLP/examples/question_answering/train-v1.1.json \
453
- --predict_file /data/home/hlu/notebooks/NLP/examples/question_answering/dev-v1.1.json \
454
- --learning_rate 3e-5 \
455
- --num_train_epochs 2 \
456
- --max_seq_length 384 \
457
- --doc_stride 128 \
458
- --output_dir ./wwm_cased_finetuned_squad/ \
459
- --per_gpu_eval_batch_size=4 \
460
- --per_gpu_train_batch_size=4 \
461
- --save_steps 5000
462
- ```
463
-
464
- ##### Command for SQuAD2.0:
465
-
466
- ```bash
467
- export SQUAD_DIR=/path/to/SQUAD
468
-
469
- python run_squad.py \
470
- --model_type xlnet \
471
- --model_name_or_path xlnet-large-cased \
472
- --do_train \
473
- --do_eval \
474
- --version_2_with_negative \
475
- --train_file $SQUAD_DIR/train-v2.0.json \
476
- --predict_file $SQUAD_DIR/dev-v2.0.json \
477
- --learning_rate 3e-5 \
478
- --num_train_epochs 4 \
479
- --max_seq_length 384 \
480
- --doc_stride 128 \
481
- --output_dir ./wwm_cased_finetuned_squad/ \
482
- --per_gpu_eval_batch_size=2 \
483
- --per_gpu_train_batch_size=2 \
484
- --save_steps 5000
485
- ```
486
-
487
- Larger batch size may improve the performance while costing more memory.
488
-
489
- ##### Results for SQuAD1.0 with the previously defined hyper-parameters:
490
-
491
- ```python
492
- {
493
- "exact": 85.45884578997162,
494
- "f1": 92.5974600601065,
495
- "total": 10570,
496
- "HasAns_exact": 85.45884578997162,
497
- "HasAns_f1": 92.59746006010651,
498
- "HasAns_total": 10570
499
- }
500
- ```
501
-
502
- ##### Results for SQuAD2.0 with the previously defined hyper-parameters:
503
-
504
- ```python
505
- {
506
- "exact": 80.4177545691906,
507
- "f1": 84.07154997729623,
508
- "total": 11873,
509
- "HasAns_exact": 76.73751686909581,
510
- "HasAns_f1": 84.05558584352873,
511
- "HasAns_total": 5928,
512
- "NoAns_exact": 84.0874684608915,
513
- "NoAns_f1": 84.0874684608915,
514
- "NoAns_total": 5945
515
- }
516
- ```
517
-
518
-
519
-
520
- ## Named Entity Recognition
521
-
522
- Based on the scripts [`run_ner.py`](https://github.com/huggingface/transformers/blob/master/examples/run_ner.py) for Pytorch and
523
- [`run_tf_ner.py`](https://github.com/huggingface/transformers/blob/master/examples/run_tf_ner.py) for Tensorflow 2.
524
- This example fine-tune Bert Multilingual on GermEval 2014 (German NER).
525
- Details and results for the fine-tuning provided by @stefan-it.
526
-
527
- ### Data (Download and pre-processing steps)
528
-
529
- Data can be obtained from the [GermEval 2014](https://sites.google.com/site/germeval2014ner/data) shared task page.
530
-
531
- Here are the commands for downloading and pre-processing train, dev and test datasets. The original data format has four (tab-separated) columns, in a pre-processing step only the two relevant columns (token and outer span NER annotation) are extracted:
532
-
533
- ```bash
534
- curl -L 'https://sites.google.com/site/germeval2014ner/data/NER-de-train.tsv?attredirects=0&d=1' \
535
- | grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > train.txt.tmp
536
- curl -L 'https://sites.google.com/site/germeval2014ner/data/NER-de-dev.tsv?attredirects=0&d=1' \
537
- | grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > dev.txt.tmp
538
- curl -L 'https://sites.google.com/site/germeval2014ner/data/NER-de-test.tsv?attredirects=0&d=1' \
539
- | grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > test.txt.tmp
540
- ```
541
-
542
- The GermEval 2014 dataset contains some strange "control character" tokens like `'\x96', '\u200e', '\x95', '\xad' or '\x80'`. One problem with these tokens is, that `BertTokenizer` returns an empty token for them, resulting in misaligned `InputExample`s. I wrote a script that a) filters these tokens and b) splits longer sentences into smaller ones (once the max. subtoken length is reached).
543
-
544
- ```bash
545
- wget "https://raw.githubusercontent.com/stefan-it/fine-tuned-berts-seq/master/scripts/preprocess.py"
546
- ```
547
- Let's define some variables that we need for further pre-processing steps and training the model:
548
-
549
- ```bash
550
- export MAX_LENGTH=128
551
- export BERT_MODEL=bert-base-multilingual-cased
552
- ```
553
-
554
- Run the pre-processing script on training, dev and test datasets:
555
-
556
- ```bash
557
- python3 preprocess.py train.txt.tmp $BERT_MODEL $MAX_LENGTH > train.txt
558
- python3 preprocess.py dev.txt.tmp $BERT_MODEL $MAX_LENGTH > dev.txt
559
- python3 preprocess.py test.txt.tmp $BERT_MODEL $MAX_LENGTH > test.txt
560
- ```
561
-
562
- The GermEval 2014 dataset has much more labels than CoNLL-2002/2003 datasets, so an own set of labels must be used:
563
-
564
- ```bash
565
- cat train.txt dev.txt test.txt | cut -d " " -f 2 | grep -v "^$"| sort | uniq > labels.txt
566
- ```
567
-
568
- ### Prepare the run
569
-
570
- Additional environment variables must be set:
571
-
572
- ```bash
573
- export OUTPUT_DIR=germeval-model
574
- export BATCH_SIZE=32
575
- export NUM_EPOCHS=3
576
- export SAVE_STEPS=750
577
- export SEED=1
578
- ```
579
-
580
- ### Run the Pytorch version
581
-
582
- To start training, just run:
583
-
584
- ```bash
585
- python3 run_ner.py --data_dir ./ \
586
- --model_type bert \
587
- --labels ./labels.txt \
588
- --model_name_or_path $BERT_MODEL \
589
- --output_dir $OUTPUT_DIR \
590
- --max_seq_length $MAX_LENGTH \
591
- --num_train_epochs $NUM_EPOCHS \
592
- --per_gpu_train_batch_size $BATCH_SIZE \
593
- --save_steps $SAVE_STEPS \
594
- --seed $SEED \
595
- --do_train \
596
- --do_eval \
597
- --do_predict
598
- ```
599
-
600
- If your GPU supports half-precision training, just add the `--fp16` flag. After training, the model will be both evaluated on development and test datasets.
601
-
602
- #### Evaluation
603
-
604
- Evaluation on development dataset outputs the following for our example:
605
-
606
- ```bash
607
- 10/04/2019 00:42:06 - INFO - __main__ - ***** Eval results *****
608
- 10/04/2019 00:42:06 - INFO - __main__ - f1 = 0.8623348017621146
609
- 10/04/2019 00:42:06 - INFO - __main__ - loss = 0.07183869666975543
610
- 10/04/2019 00:42:06 - INFO - __main__ - precision = 0.8467916366258111
611
- 10/04/2019 00:42:06 - INFO - __main__ - recall = 0.8784592370979806
612
- ```
613
-
614
- On the test dataset the following results could be achieved:
615
-
616
- ```bash
617
- 10/04/2019 00:42:42 - INFO - __main__ - ***** Eval results *****
618
- 10/04/2019 00:42:42 - INFO - __main__ - f1 = 0.8614389652384803
619
- 10/04/2019 00:42:42 - INFO - __main__ - loss = 0.07064602487454782
620
- 10/04/2019 00:42:42 - INFO - __main__ - precision = 0.8604651162790697
621
- 10/04/2019 00:42:42 - INFO - __main__ - recall = 0.8624150210424085
622
- ```
623
-
624
- #### Comparing BERT (large, cased), RoBERTa (large, cased) and DistilBERT (base, uncased)
625
-
626
- Here is a small comparison between BERT (large, cased), RoBERTa (large, cased) and DistilBERT (base, uncased) with the same hyperparameters as specified in the [example documentation](https://huggingface.co/transformers/examples.html#named-entity-recognition) (one run):
627
-
628
- | Model | F-Score Dev | F-Score Test
629
- | --------------------------------- | ------- | --------
630
- | `bert-large-cased` | 95.59 | 91.70
631
- | `roberta-large` | 95.96 | 91.87
632
- | `distilbert-base-uncased` | 94.34 | 90.32
633
-
634
- ### Run the Tensorflow 2 version
635
-
636
- To start training, just run:
637
-
638
- ```bash
639
- python3 run_tf_ner.py --data_dir ./ \
640
- --model_type bert \
641
- --labels ./labels.txt \
642
- --model_name_or_path $BERT_MODEL \
643
- --output_dir $OUTPUT_DIR \
644
- --max_seq_length $MAX_LENGTH \
645
- --num_train_epochs $NUM_EPOCHS \
646
- --per_device_train_batch_size $BATCH_SIZE \
647
- --save_steps $SAVE_STEPS \
648
- --seed $SEED \
649
- --do_train \
650
- --do_eval \
651
- --do_predict
652
- ```
653
-
654
- Such as the Pytorch version, if your GPU supports half-precision training, just add the `--fp16` flag. After training, the model will be both evaluated on development and test datasets.
655
-
656
- #### Evaluation
657
-
658
- Evaluation on development dataset outputs the following for our example:
659
- ```bash
660
- precision recall f1-score support
661
-
662
- LOCderiv 0.7619 0.6154 0.6809 52
663
- PERpart 0.8724 0.8997 0.8858 4057
664
- OTHpart 0.9360 0.9466 0.9413 711
665
- ORGpart 0.7015 0.6989 0.7002 269
666
- LOCpart 0.7668 0.8488 0.8057 496
667
- LOC 0.8745 0.9191 0.8963 235
668
- ORGderiv 0.7723 0.8571 0.8125 91
669
- OTHderiv 0.4800 0.6667 0.5581 18
670
- OTH 0.5789 0.6875 0.6286 16
671
- PERderiv 0.5385 0.3889 0.4516 18
672
- PER 0.5000 0.5000 0.5000 2
673
- ORG 0.0000 0.0000 0.0000 3
674
-
675
- micro avg 0.8574 0.8862 0.8715 5968
676
- macro avg 0.8575 0.8862 0.8713 5968
677
- ```
678
-
679
- On the test dataset the following results could be achieved:
680
- ```bash
681
- precision recall f1-score support
682
-
683
- PERpart 0.8847 0.8944 0.8896 9397
684
- OTHpart 0.9376 0.9353 0.9365 1639
685
- ORGpart 0.7307 0.7044 0.7173 697
686
- LOC 0.9133 0.9394 0.9262 561
687
- LOCpart 0.8058 0.8157 0.8107 1150
688
- ORG 0.0000 0.0000 0.0000 8
689
- OTHderiv 0.5882 0.4762 0.5263 42
690
- PERderiv 0.6571 0.5227 0.5823 44
691
- OTH 0.4906 0.6667 0.5652 39
692
- ORGderiv 0.7016 0.7791 0.7383 172
693
- LOCderiv 0.8256 0.6514 0.7282 109
694
- PER 0.0000 0.0000 0.0000 11
695
-
696
- micro avg 0.8722 0.8774 0.8748 13869
697
- macro avg 0.8712 0.8774 0.8740 13869
698
- ```
699
-
700
- ## XNLI
701
-
702
- Based on the script [`run_xnli.py`](https://github.com/huggingface/transformers/blob/master/examples/run_xnli.py).
703
-
704
- [XNLI](https://www.nyu.edu/projects/bowman/xnli/) is crowd-sourced dataset based on [MultiNLI](http://www.nyu.edu/projects/bowman/multinli/). It is an evaluation benchmark for cross-lingual text representations. Pairs of text are labeled with textual entailment annotations for 15 different languages (including both high-ressource language such as English and low-ressource languages such as Swahili).
705
-
706
- #### Fine-tuning on XNLI
707
-
708
- This example code fine-tunes mBERT (multi-lingual BERT) on the XNLI dataset. It runs in 106 mins
709
- on a single tesla V100 16GB. The data for XNLI can be downloaded with the following links and should be both saved (and un-zipped) in a
710
- `$XNLI_DIR` directory.
711
-
712
- * [XNLI 1.0](https://www.nyu.edu/projects/bowman/xnli/XNLI-1.0.zip)
713
- * [XNLI-MT 1.0](https://www.nyu.edu/projects/bowman/xnli/XNLI-MT-1.0.zip)
714
-
715
- ```bash
716
- export XNLI_DIR=/path/to/XNLI
717
-
718
- python run_xnli.py \
719
- --model_type bert \
720
- --model_name_or_path bert-base-multilingual-cased \
721
- --language de \
722
- --train_language en \
723
- --do_train \
724
- --do_eval \
725
- --data_dir $XNLI_DIR \
726
- --per_gpu_train_batch_size 32 \
727
- --learning_rate 5e-5 \
728
- --num_train_epochs 2.0 \
729
- --max_seq_length 128 \
730
- --output_dir /tmp/debug_xnli/ \
731
- --save_steps -1
732
- ```
733
-
734
- Training with the previously defined hyper-parameters yields the following results on the **test** set:
735
-
736
- ```bash
737
- acc = 0.7093812375249501
738
- ```
739
-
740
- ## MM-IMDb
741
-
742
- Based on the script [`run_mmimdb.py`](https://github.com/huggingface/transformers/blob/master/examples/mm-imdb/run_mmimdb.py).
743
-
744
- [MM-IMDb](http://lisi1.unal.edu.co/mmimdb/) is a Multimodal dataset with around 26,000 movies including images, plots and other metadata.
745
-
746
- ### Training on MM-IMDb
747
-
748
- ```
749
- python run_mmimdb.py \
750
- --data_dir /path/to/mmimdb/dataset/ \
751
- --model_type bert \
752
- --model_name_or_path bert-base-uncased \
753
- --output_dir /path/to/save/dir/ \
754
- --do_train \
755
- --do_eval \
756
- --max_seq_len 512 \
757
- --gradient_accumulation_steps 20 \
758
- --num_image_embeds 3 \
759
- --num_train_epochs 100 \
760
- --patience 5
761
- ```
762
-
763
- ## Adversarial evaluation of model performances
764
-
765
- Here is an example on evaluating a model using adversarial evaluation of natural language inference with the Heuristic Analysis for NLI Systems (HANS) dataset [McCoy et al., 2019](https://arxiv.org/abs/1902.01007). The example was gracefully provided by [Nafise Sadat Moosavi](https://github.com/ns-moosavi).
766
-
767
- The HANS dataset can be downloaded from [this location](https://github.com/tommccoy1/hans).
768
-
769
- This is an example of using test_hans.py:
770
-
771
- ```bash
772
- export HANS_DIR=path-to-hans
773
- export MODEL_TYPE=type-of-the-model-e.g.-bert-roberta-xlnet-etc
774
- export MODEL_PATH=path-to-the-model-directory-that-is-trained-on-NLI-e.g.-by-using-run_glue.py
775
-
776
- python examples/test_hans.py \
777
- --task_name hans \
778
- --model_type $MODEL_TYPE \
779
- --do_eval \
780
- --do_lower_case \
781
- --data_dir $HANS_DIR \
782
- --model_name_or_path $MODEL_PATH \
783
- --max_seq_length 128 \
784
- -output_dir $MODEL_PATH \
785
- ```
786
-
787
- This will create the hans_predictions.txt file in MODEL_PATH, which can then be evaluated using hans/evaluate_heur_output.py from the HANS dataset.
788
-
789
- The results of the BERT-base model that is trained on MNLI using batch size 8 and the random seed 42 on the HANS dataset is as follows:
790
-
791
- ```bash
792
- Heuristic entailed results:
793
- lexical_overlap: 0.9702
794
- subsequence: 0.9942
795
- constituent: 0.9962
796
-
797
- Heuristic non-entailed results:
798
- lexical_overlap: 0.199
799
- subsequence: 0.0396
800
- constituent: 0.118
801
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/imgs/transformers_logo_name.png DELETED
Binary file (8.87 kB)
 
server/transformers/docs/source/imgs/warmup_constant_schedule.png DELETED
Binary file (9.98 kB)
 
server/transformers/docs/source/imgs/warmup_cosine_hard_restarts_schedule.png DELETED
Binary file (22.4 kB)
 
server/transformers/docs/source/imgs/warmup_cosine_schedule.png DELETED
Binary file (17.3 kB)
 
server/transformers/docs/source/imgs/warmup_cosine_warm_restarts_schedule.png DELETED
Binary file (22.3 kB)
 
server/transformers/docs/source/imgs/warmup_linear_schedule.png DELETED
Binary file (16.8 kB)
 
server/transformers/docs/source/index.rst DELETED
@@ -1,98 +0,0 @@
1
- Transformers
2
- ================================================================================================================================================
3
-
4
- 🤗 Transformers (formerly known as `pytorch-transformers` and `pytorch-pretrained-bert`) provides general-purpose architectures
5
- (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet...) for Natural Language Understanding (NLU) and Natural Language Generation
6
- (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between TensorFlow 2.0 and PyTorch.
7
-
8
- This is the documentation of our repository `transformers <https://github.com/huggingface/transformers>`__.
9
-
10
- Features
11
- ---------------------------------------------------
12
-
13
- - As easy to use as pytorch-transformers
14
- - As powerful and concise as Keras
15
- - High performance on NLU and NLG tasks
16
- - Low barrier to entry for educators and practitioners
17
-
18
- State-of-the-art NLP for everyone:
19
-
20
- - Deep learning researchers
21
- - Hands-on practitioners
22
- - AI/ML/NLP teachers and educators
23
-
24
- Lower compute costs, smaller carbon footprint:
25
-
26
- - Researchers can share trained models instead of always retraining
27
- - Practitioners can reduce compute time and production costs
28
- - 8 architectures with over 30 pretrained models, some in more than 100 languages
29
-
30
- Choose the right framework for every part of a model's lifetime:
31
-
32
- - Train state-of-the-art models in 3 lines of code
33
- - Deep interoperability between TensorFlow 2.0 and PyTorch models
34
- - Move a single model between TF2.0/PyTorch frameworks at will
35
- - Seamlessly pick the right framework for training, evaluation, production
36
-
37
- Contents
38
- ---------------------------------
39
-
40
- The library currently contains PyTorch and Tensorflow implementations, pre-trained model weights, usage scripts and conversion utilities for the following models:
41
-
42
- 1. `BERT <https://github.com/google-research/bert>`_ (from Google) released with the paper `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding <https://arxiv.org/abs/1810.04805>`_ by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
43
- 2. `GPT <https://github.com/openai/finetune-transformer-lm>`_ (from OpenAI) released with the paper `Improving Language Understanding by Generative Pre-Training <https://blog.openai.com/language-unsupervised>`_ by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
44
- 3. `GPT-2 <https://blog.openai.com/better-language-models>`_ (from OpenAI) released with the paper `Language Models are Unsupervised Multitask Learners <https://blog.openai.com/better-language-models>`_ by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
45
- 4. `Transformer-XL <https://github.com/kimiyoung/transformer-xl>`_ (from Google/CMU) released with the paper `Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context <https://arxiv.org/abs/1901.02860>`_ by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
46
- 5. `XLNet <https://github.com/zihangdai/xlnet>`_ (from Google/CMU) released with the paper `​XLNet: Generalized Autoregressive Pretraining for Language Understanding <https://arxiv.org/abs/1906.08237>`_ by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
47
- 6. `XLM <https://github.com/facebookresearch/XLM>`_ (from Facebook) released together with the paper `Cross-lingual Language Model Pretraining <https://arxiv.org/abs/1901.07291>`_ by Guillaume Lample and Alexis Conneau.
48
- 7. `RoBERTa <https://github.com/pytorch/fairseq/tree/master/examples/roberta>`_ (from Facebook), released together with the paper a `Robustly Optimized BERT Pretraining Approach <https://arxiv.org/abs/1907.11692>`_ by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
49
- 8. `DistilBERT <https://huggingface.co/transformers/model_doc/distilbert.html>`_ (from HuggingFace) released together with the paper `DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter <https://arxiv.org/abs/1910.01108>`_ by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into `DistilGPT2 <https://github.com/huggingface/transformers/tree/master/examples/distillation>`_.
50
- 9. `CTRL <https://github.com/pytorch/fairseq/tree/master/examples/ctrl>`_ (from Salesforce), released together with the paper `CTRL: A Conditional Transformer Language Model for Controllable Generation <https://www.github.com/salesforce/ctrl>`_ by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
51
- 10. `CamemBERT <https://huggingface.co/transformers/model_doc/camembert.html>`_ (from FAIR, Inria, Sorbonne Université) released together with the paper `CamemBERT: a Tasty French Language Model <https://arxiv.org/abs/1911.03894>`_ by Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suarez, Yoann Dupont, Laurent Romary, Eric Villemonte de la Clergerie, Djame Seddah, and Benoît Sagot.
52
- 11. `ALBERT <https://github.com/google-research/ALBERT>`_ (from Google Research), released together with the paper a `ALBERT: A Lite BERT for Self-supervised Learning of Language Representations <https://arxiv.org/abs/1909.11942>`_ by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
53
- 12. `XLM-RoBERTa <https://github.com/pytorch/fairseq/tree/master/examples/xlmr>`_ (from Facebook AI), released together with the paper `Unsupervised Cross-lingual Representation Learning at Scale <https://arxiv.org/abs/1911.02116>`_ by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
54
-
55
- .. toctree::
56
- :maxdepth: 2
57
- :caption: Notes
58
-
59
- installation
60
- quickstart
61
- pretrained_models
62
- model_sharing
63
- examples
64
- notebooks
65
- serialization
66
- converting_tensorflow_models
67
- migration
68
- bertology
69
- torchscript
70
- multilingual
71
- benchmarks
72
-
73
- .. toctree::
74
- :maxdepth: 2
75
- :caption: Main classes
76
-
77
- main_classes/configuration
78
- main_classes/model
79
- main_classes/tokenizer
80
- main_classes/optimizer_schedules
81
- main_classes/processors
82
-
83
- .. toctree::
84
- :maxdepth: 2
85
- :caption: Package Reference
86
-
87
- model_doc/auto
88
- model_doc/bert
89
- model_doc/gpt
90
- model_doc/transformerxl
91
- model_doc/gpt2
92
- model_doc/xlm
93
- model_doc/xlnet
94
- model_doc/roberta
95
- model_doc/distilbert
96
- model_doc/ctrl
97
- model_doc/camembert
98
- model_doc/albert
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/installation.md DELETED
@@ -1,51 +0,0 @@
1
- # Installation
2
-
3
- Transformers is tested on Python 3.5+ and PyTorch 1.1.0
4
-
5
- ## With pip
6
-
7
- PyTorch Transformers can be installed using pip as follows:
8
-
9
- ``` bash
10
- pip install transformers
11
- ```
12
-
13
- ## From source
14
-
15
- To install from source, clone the repository and install with:
16
-
17
- ``` bash
18
- git clone https://github.com/huggingface/transformers.git
19
- cd transformers
20
- pip install .
21
- ```
22
-
23
- ## Tests
24
-
25
- An extensive test suite is included to test the library behavior and several examples. Library tests can be found in the [tests folder](https://github.com/huggingface/transformers/tree/master/tests) and examples tests in the [examples folder](https://github.com/huggingface/transformers/tree/master/examples).
26
-
27
- Refer to the [contributing guide](https://github.com/huggingface/transformers/blob/master/CONTRIBUTING.md#tests) for details about running tests.
28
-
29
- ## OpenAI GPT original tokenization workflow
30
-
31
- If you want to reproduce the original tokenization process of the `OpenAI GPT` paper, you will need to install `ftfy` and `SpaCy`:
32
-
33
- ``` bash
34
- pip install spacy ftfy==4.4.3
35
- python -m spacy download en
36
- ```
37
-
38
- If you don't install `ftfy` and `SpaCy`, the `OpenAI GPT` tokenizer will default to tokenize using BERT's `BasicTokenizer` followed by Byte-Pair Encoding (which should be fine for most usage, don't worry).
39
-
40
- ## Note on model downloads (Continuous Integration or large-scale deployments)
41
-
42
- If you expect to be downloading large volumes of models (more than 1,000) from our hosted bucket (for instance through your CI setup, or a large-scale production deployment), please cache the model files on your end. It will be way faster, and cheaper. Feel free to contact us privately if you need any help.
43
-
44
- ## Do you want to run a Transformer model on a mobile device?
45
-
46
- You should check out our [swift-coreml-transformers](https://github.com/huggingface/swift-coreml-transformers) repo.
47
-
48
- It contains a set of tools to convert PyTorch or TensorFlow 2.0 trained Transformer models (currently contains `GPT-2`, `DistilGPT-2`, `BERT`, and `DistilBERT`) to CoreML models that run on iOS devices.
49
-
50
- At some point in the future, you'll be able to seamlessly move from pre-training or fine-tuning models in PyTorch to productizing them in CoreML,
51
- or prototype a model or an app in CoreML then research its hyperparameters or architecture from PyTorch. Super exciting!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/main_classes/configuration.rst DELETED
@@ -1,10 +0,0 @@
1
- Configuration
2
- ----------------------------------------------------
3
-
4
- The base class ``PretrainedConfig`` implements the common methods for loading/saving a configuration either from a local file or directory, or from a pretrained model configuration provided by the library (downloaded from HuggingFace's AWS S3 repository).
5
-
6
- ``PretrainedConfig``
7
- ~~~~~~~~~~~~~~~~~~~~~
8
-
9
- .. autoclass:: transformers.PretrainedConfig
10
- :members:
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/main_classes/model.rst DELETED
@@ -1,21 +0,0 @@
1
- Models
2
- ----------------------------------------------------
3
-
4
- The base class ``PreTrainedModel`` implements the common methods for loading/saving a model either from a local file or directory, or from a pretrained model configuration provided by the library (downloaded from HuggingFace's AWS S3 repository).
5
-
6
- ``PreTrainedModel`` also implements a few methods which are common among all the models to:
7
-
8
- - resize the input token embeddings when new tokens are added to the vocabulary
9
- - prune the attention heads of the model.
10
-
11
- ``PreTrainedModel``
12
- ~~~~~~~~~~~~~~~~~~~~~
13
-
14
- .. autoclass:: transformers.PreTrainedModel
15
- :members:
16
-
17
- ``TFPreTrainedModel``
18
- ~~~~~~~~~~~~~~~~~~~~~
19
-
20
- .. autoclass:: transformers.TFPreTrainedModel
21
- :members:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/main_classes/optimizer_schedules.rst DELETED
@@ -1,75 +0,0 @@
1
- Optimizer
2
- ----------------------------------------------------
3
-
4
- The ``.optimization`` module provides:
5
-
6
- - an optimizer with weight decay fixed that can be used to fine-tuned models, and
7
- - several schedules in the form of schedule objects that inherit from ``_LRSchedule``:
8
- - a gradient accumulation class to accumulate the gradients of multiple batches
9
-
10
- ``AdamW``
11
- ~~~~~~~~~~~~~~~~
12
-
13
- .. autoclass:: transformers.AdamW
14
- :members:
15
-
16
- ``AdamWeightDecay``
17
- ~~~~~~~~~~~~~~~~~~~
18
-
19
- .. autoclass:: transformers.AdamWeightDecay
20
- :members:
21
-
22
- .. autofunction:: transformers.create_optimizer
23
- :members:
24
-
25
- Schedules
26
- ----------------------------------------------------
27
-
28
- Learning Rate Schedules
29
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
30
-
31
- .. autofunction:: transformers.get_constant_schedule
32
-
33
-
34
- .. autofunction:: transformers.get_constant_schedule_with_warmup
35
-
36
- .. image:: /imgs/warmup_constant_schedule.png
37
- :target: /imgs/warmup_constant_schedule.png
38
- :alt:
39
-
40
-
41
- .. autofunction:: transformers.get_cosine_schedule_with_warmup
42
- :members:
43
-
44
- .. image:: /imgs/warmup_cosine_schedule.png
45
- :target: /imgs/warmup_cosine_schedule.png
46
- :alt:
47
-
48
-
49
- .. autofunction:: transformers.get_cosine_with_hard_restarts_schedule_with_warmup
50
-
51
- .. image:: /imgs/warmup_cosine_hard_restarts_schedule.png
52
- :target: /imgs/warmup_cosine_hard_restarts_schedule.png
53
- :alt:
54
-
55
-
56
-
57
- .. autofunction:: transformers.get_linear_schedule_with_warmup
58
-
59
- .. image:: /imgs/warmup_linear_schedule.png
60
- :target: /imgs/warmup_linear_schedule.png
61
- :alt:
62
-
63
- ``Warmup``
64
- ~~~~~~~~~~~~~~~~
65
-
66
- .. autoclass:: transformers.Warmup
67
- :members:
68
-
69
- Gradient Strategies
70
- ----------------------------------------------------
71
-
72
- ``GradientAccumulator``
73
- ~~~~~~~~~~~~~~~~~~~~~~~
74
-
75
- .. autoclass:: transformers.GradientAccumulator
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/main_classes/processors.rst DELETED
@@ -1,153 +0,0 @@
1
- Processors
2
- ----------------------------------------------------
3
-
4
- This library includes processors for several traditional tasks. These processors can be used to process a dataset into
5
- examples that can be fed to a model.
6
-
7
- Processors
8
- ~~~~~~~~~~~~~~~~~~~~~
9
-
10
- All processors follow the same architecture which is that of the
11
- :class:`~transformers.data.processors.utils.DataProcessor`. The processor returns a list
12
- of :class:`~transformers.data.processors.utils.InputExample`. These
13
- :class:`~transformers.data.processors.utils.InputExample` can be converted to
14
- :class:`~transformers.data.processors.utils.InputFeatures` in order to be fed to the model.
15
-
16
- .. autoclass:: transformers.data.processors.utils.DataProcessor
17
- :members:
18
-
19
-
20
- .. autoclass:: transformers.data.processors.utils.InputExample
21
- :members:
22
-
23
-
24
- .. autoclass:: transformers.data.processors.utils.InputFeatures
25
- :members:
26
-
27
-
28
- GLUE
29
- ~~~~~~~~~~~~~~~~~~~~~
30
-
31
- `General Language Understanding Evaluation (GLUE) <https://gluebenchmark.com/>`__ is a benchmark that evaluates
32
- the performance of models across a diverse set of existing NLU tasks. It was released together with the paper
33
- `GLUE: A multi-task benchmark and analysis platform for natural language understanding <https://openreview.net/pdf?id=rJ4km2R5t7>`__
34
-
35
- This library hosts a total of 10 processors for the following tasks: MRPC, MNLI, MNLI (mismatched),
36
- CoLA, SST2, STSB, QQP, QNLI, RTE and WNLI.
37
-
38
- Those processors are:
39
- - :class:`~transformers.data.processors.utils.MrpcProcessor`
40
- - :class:`~transformers.data.processors.utils.MnliProcessor`
41
- - :class:`~transformers.data.processors.utils.MnliMismatchedProcessor`
42
- - :class:`~transformers.data.processors.utils.Sst2Processor`
43
- - :class:`~transformers.data.processors.utils.StsbProcessor`
44
- - :class:`~transformers.data.processors.utils.QqpProcessor`
45
- - :class:`~transformers.data.processors.utils.QnliProcessor`
46
- - :class:`~transformers.data.processors.utils.RteProcessor`
47
- - :class:`~transformers.data.processors.utils.WnliProcessor`
48
-
49
- Additionally, the following method can be used to load values from a data file and convert them to a list of
50
- :class:`~transformers.data.processors.utils.InputExample`.
51
-
52
- .. automethod:: transformers.data.processors.glue.glue_convert_examples_to_features
53
-
54
- Example usage
55
- ^^^^^^^^^^^^^^^^^^^^^^^^^
56
-
57
- An example using these processors is given in the `run_glue.py <https://github.com/huggingface/pytorch-transformers/blob/master/examples/run_glue.py>`__ script.
58
-
59
-
60
- XNLI
61
- ~~~~~~~~~~~~~~~~~~~~~
62
-
63
- `The Cross-Lingual NLI Corpus (XNLI) <https://www.nyu.edu/projects/bowman/xnli/>`__ is a benchmark that evaluates
64
- the quality of cross-lingual text representations.
65
- XNLI is crowd-sourced dataset based on `MultiNLI <http://www.nyu.edu/projects/bowman/multinli/>`: pairs of text are labeled with textual entailment
66
- annotations for 15 different languages (including both high-ressource language such as English and low-ressource languages such as Swahili).
67
-
68
- It was released together with the paper
69
- `XNLI: Evaluating Cross-lingual Sentence Representations <https://arxiv.org/abs/1809.05053>`__
70
-
71
- This library hosts the processor to load the XNLI data:
72
- - :class:`~transformers.data.processors.utils.XnliProcessor`
73
-
74
- Please note that since the gold labels are available on the test set, evaluation is performed on the test set.
75
-
76
- An example using these processors is given in the
77
- `run_xnli.py <https://github.com/huggingface/pytorch-transformers/blob/master/examples/run_xnli.py>`__ script.
78
-
79
-
80
- SQuAD
81
- ~~~~~~~~~~~~~~~~~~~~~
82
-
83
- `The Stanford Question Answering Dataset (SQuAD) <https://rajpurkar.github.io/SQuAD-explorer//>`__ is a benchmark that evaluates
84
- the performance of models on question answering. Two versions are available, v1.1 and v2.0. The first version (v1.1) was released together with the paper
85
- `SQuAD: 100,000+ Questions for Machine Comprehension of Text <https://arxiv.org/abs/1606.05250>`__. The second version (v2.0) was released alongside
86
- the paper `Know What You Don't Know: Unanswerable Questions for SQuAD <https://arxiv.org/abs/1806.03822>`__.
87
-
88
- This library hosts a processor for each of the two versions:
89
-
90
- Processors
91
- ^^^^^^^^^^^^^^^^^^^^^^^^^
92
-
93
- Those processors are:
94
- - :class:`~transformers.data.processors.utils.SquadV1Processor`
95
- - :class:`~transformers.data.processors.utils.SquadV2Processor`
96
-
97
- They both inherit from the abstract class :class:`~transformers.data.processors.utils.SquadProcessor`
98
-
99
- .. autoclass:: transformers.data.processors.squad.SquadProcessor
100
- :members:
101
-
102
- Additionally, the following method can be used to convert SQuAD examples into :class:`~transformers.data.processors.utils.SquadFeatures`
103
- that can be used as model inputs.
104
-
105
- .. automethod:: transformers.data.processors.squad.squad_convert_examples_to_features
106
-
107
- These processors as well as the aforementionned method can be used with files containing the data as well as with the `tensorflow_datasets` package.
108
- Examples are given below.
109
-
110
-
111
- Example usage
112
- ^^^^^^^^^^^^^^^^^^^^^^^^^
113
- Here is an example using the processors as well as the conversion method using data files:
114
-
115
- Example::
116
-
117
- # Loading a V2 processor
118
- processor = SquadV2Processor()
119
- examples = processor.get_dev_examples(squad_v2_data_dir)
120
-
121
- # Loading a V1 processor
122
- processor = SquadV1Processor()
123
- examples = processor.get_dev_examples(squad_v1_data_dir)
124
-
125
- features = squad_convert_examples_to_features(
126
- examples=examples,
127
- tokenizer=tokenizer,
128
- max_seq_length=max_seq_length,
129
- doc_stride=args.doc_stride,
130
- max_query_length=max_query_length,
131
- is_training=not evaluate,
132
- )
133
-
134
- Using `tensorflow_datasets` is as easy as using a data file:
135
-
136
- Example::
137
-
138
- # tensorflow_datasets only handle Squad V1.
139
- tfds_examples = tfds.load("squad")
140
- examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
141
-
142
- features = squad_convert_examples_to_features(
143
- examples=examples,
144
- tokenizer=tokenizer,
145
- max_seq_length=max_seq_length,
146
- doc_stride=args.doc_stride,
147
- max_query_length=max_query_length,
148
- is_training=not evaluate,
149
- )
150
-
151
-
152
- Another example using these processors is given in the
153
- `run_squad.py <https://github.com/huggingface/transformers/blob/master/examples/run_squad.py>`__ script.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/main_classes/tokenizer.rst DELETED
@@ -1,16 +0,0 @@
1
- Tokenizer
2
- ----------------------------------------------------
3
-
4
- The base class ``PreTrainedTokenizer`` implements the common methods for loading/saving a tokenizer either from a local file or directory, or from a pretrained tokenizer provided by the library (downloaded from HuggingFace's AWS S3 repository).
5
-
6
- ``PreTrainedTokenizer`` is the main entry point into tokenizers as it also implements the main methods for using all the tokenizers:
7
-
8
- - tokenizing, converting tokens to ids and back and encoding/decoding,
9
- - adding new tokens to the vocabulary in a way that is independant of the underlying structure (BPE, SentencePiece...),
10
- - managing special tokens (adding them, assigning them to roles, making sure they are not split during tokenization)
11
-
12
- ``PreTrainedTokenizer``
13
- ~~~~~~~~~~~~~~~~~~~~~~~~
14
-
15
- .. autoclass:: transformers.PreTrainedTokenizer
16
- :members:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/migration.md DELETED
@@ -1,109 +0,0 @@
1
- # Migrating from pytorch-pretrained-bert
2
-
3
-
4
- Here is a quick summary of what you should take care of when migrating from `pytorch-pretrained-bert` to `transformers`
5
-
6
- ### Models always output `tuples`
7
-
8
- The main breaking change when migrating from `pytorch-pretrained-bert` to `transformers` is that the models forward method always outputs a `tuple` with various elements depending on the model and the configuration parameters.
9
-
10
- The exact content of the tuples for each model are detailled in the models' docstrings and the [documentation](https://huggingface.co/transformers/).
11
-
12
- In pretty much every case, you will be fine by taking the first element of the output as the output you previously used in `pytorch-pretrained-bert`.
13
-
14
- Here is a `pytorch-pretrained-bert` to `transformers` conversion example for a `BertForSequenceClassification` classification model:
15
-
16
- ```python
17
- # Let's load our model
18
- model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
19
-
20
- # If you used to have this line in pytorch-pretrained-bert:
21
- loss = model(input_ids, labels=labels)
22
-
23
- # Now just use this line in transformers to extract the loss from the output tuple:
24
- outputs = model(input_ids, labels=labels)
25
- loss = outputs[0]
26
-
27
- # In transformers you can also have access to the logits:
28
- loss, logits = outputs[:2]
29
-
30
- # And even the attention weigths if you configure the model to output them (and other outputs too, see the docstrings and documentation)
31
- model = BertForSequenceClassification.from_pretrained('bert-base-uncased', output_attentions=True)
32
- outputs = model(input_ids, labels=labels)
33
- loss, logits, attentions = outputs
34
- ```
35
-
36
- ### Serialization
37
-
38
- Breaking change in the `from_pretrained()`method:
39
-
40
- 1. Models are now set in evaluation mode by default when instantiated with the `from_pretrained()` method. To train them don't forget to set them back in training mode (`model.train()`) to activate the dropout modules.
41
-
42
- 2. The additional `*inputs` and `**kwargs` arguments supplied to the `from_pretrained()` method used to be directly passed to the underlying model's class `__init__()` method. They are now used to update the model configuration attribute first which can break derived model classes build based on the previous `BertForSequenceClassification` examples. More precisely, the positional arguments `*inputs` provided to `from_pretrained()` are directly forwarded the model `__init__()` method while the keyword arguments `**kwargs` (i) which match configuration class attributes are used to update said attributes (ii) which don't match any configuration class attributes are forwarded to the model `__init__()` method.
43
-
44
- Also, while not a breaking change, the serialization methods have been standardized and you probably should switch to the new method `save_pretrained(save_directory)` if you were using any other serialization method before.
45
-
46
- Here is an example:
47
-
48
- ```python
49
- ### Let's load a model and tokenizer
50
- model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
51
- tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
52
-
53
- ### Do some stuff to our model and tokenizer
54
- # Ex: add new tokens to the vocabulary and embeddings of our model
55
- tokenizer.add_tokens(['[SPECIAL_TOKEN_1]', '[SPECIAL_TOKEN_2]'])
56
- model.resize_token_embeddings(len(tokenizer))
57
- # Train our model
58
- train(model)
59
-
60
- ### Now let's save our model and tokenizer to a directory
61
- model.save_pretrained('./my_saved_model_directory/')
62
- tokenizer.save_pretrained('./my_saved_model_directory/')
63
-
64
- ### Reload the model and the tokenizer
65
- model = BertForSequenceClassification.from_pretrained('./my_saved_model_directory/')
66
- tokenizer = BertTokenizer.from_pretrained('./my_saved_model_directory/')
67
- ```
68
-
69
- ### Optimizers: BertAdam & OpenAIAdam are now AdamW, schedules are standard PyTorch schedules
70
-
71
- The two optimizers previously included, `BertAdam` and `OpenAIAdam`, have been replaced by a single `AdamW` optimizer which has a few differences:
72
-
73
- - it only implements weights decay correction,
74
- - schedules are now externals (see below),
75
- - gradient clipping is now also external (see below).
76
-
77
- The new optimizer `AdamW` matches PyTorch `Adam` optimizer API and let you use standard PyTorch or apex methods for the schedule and clipping.
78
-
79
- The schedules are now standard [PyTorch learning rate schedulers](https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate) and not part of the optimizer anymore.
80
-
81
- Here is a conversion examples from `BertAdam` with a linear warmup and decay schedule to `AdamW` and the same schedule:
82
-
83
- ```python
84
- # Parameters:
85
- lr = 1e-3
86
- max_grad_norm = 1.0
87
- num_training_steps = 1000
88
- num_warmup_steps = 100
89
- warmup_proportion = float(num_warmup_steps) / float(num_training_steps) # 0.1
90
-
91
- ### Previously BertAdam optimizer was instantiated like this:
92
- optimizer = BertAdam(model.parameters(), lr=lr, schedule='warmup_linear', warmup=warmup_proportion, num_training_steps=num_training_steps)
93
- ### and used like this:
94
- for batch in train_data:
95
- loss = model(batch)
96
- loss.backward()
97
- optimizer.step()
98
-
99
- ### In Transformers, optimizer and schedules are splitted and instantiated like this:
100
- optimizer = AdamW(model.parameters(), lr=lr, correct_bias=False) # To reproduce BertAdam specific behavior set correct_bias=False
101
- scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps) # PyTorch scheduler
102
- ### and used like this:
103
- for batch in train_data:
104
- loss = model(batch)
105
- loss.backward()
106
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm) # Gradient clipping is not in AdamW anymore (so you can use amp without issue)
107
- optimizer.step()
108
- scheduler.step()
109
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/model_doc/albert.rst DELETED
@@ -1,64 +0,0 @@
1
- ALBERT
2
- ----------------------------------------------------
3
-
4
- ``AlbertConfig``
5
- ~~~~~~~~~~~~~~~~~~~~~
6
-
7
- .. autoclass:: transformers.AlbertConfig
8
- :members:
9
-
10
-
11
- ``AlbertTokenizer``
12
- ~~~~~~~~~~~~~~~~~~~~~
13
-
14
- .. autoclass:: transformers.AlbertTokenizer
15
- :members:
16
-
17
-
18
- ``AlbertModel``
19
- ~~~~~~~~~~~~~~~~~~~~
20
-
21
- .. autoclass:: transformers.AlbertModel
22
- :members:
23
-
24
-
25
- ``AlbertForMaskedLM``
26
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27
-
28
- .. autoclass:: transformers.AlbertForMaskedLM
29
- :members:
30
-
31
-
32
- ``AlbertForSequenceClassification``
33
- ~~~~~~~~~~~~~~~~~~~~~~~~~~
34
-
35
- .. autoclass:: transformers.AlbertForSequenceClassification
36
- :members:
37
-
38
-
39
- ``AlbertForQuestionAnswering``
40
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
41
-
42
- .. autoclass:: transformers.AlbertForQuestionAnswering
43
- :members:
44
-
45
-
46
- ``TFAlbertModel``
47
- ~~~~~~~~~~~~~~~~~~~~
48
-
49
- .. autoclass:: transformers.TFAlbertModel
50
- :members:
51
-
52
-
53
- ``TFAlbertForMaskedLM``
54
- ~~~~~~~~~~~~~~~~~~~~~~~~~~
55
-
56
- .. autoclass:: transformers.TFAlbertForMaskedLM
57
- :members:
58
-
59
-
60
- ``TFAlbertForSequenceClassification``
61
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
62
-
63
- .. autoclass:: transformers.TFAlbertForSequenceClassification
64
- :members:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/model_doc/auto.rst DELETED
@@ -1,29 +0,0 @@
1
- AutoModels
2
- -----------
3
-
4
- In many cases, the architecture you want to use can be guessed from the name or the path of the pretrained model you are supplying to the ``from_pretrained`` method.
5
-
6
- AutoClasses are here to do this job for you so that you automatically retreive the relevant model given the name/path to the pretrained weights/config/vocabulary:
7
-
8
- Instantiating one of ``AutoModel``, ``AutoConfig`` and ``AutoTokenizer`` will directly create a class of the relevant architecture (ex: ``model = AutoModel.from_pretrained('bert-base-cased')`` will create a instance of ``BertModel``).
9
-
10
-
11
- ``AutoConfig``
12
- ~~~~~~~~~~~~~~~~~~~~~
13
-
14
- .. autoclass:: transformers.AutoConfig
15
- :members:
16
-
17
-
18
- ``AutoModel``
19
- ~~~~~~~~~~~~~~~~~~~~~
20
-
21
- .. autoclass:: transformers.AutoModel
22
- :members:
23
-
24
-
25
- ``AutoTokenizer``
26
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27
-
28
- .. autoclass:: transformers.AutoTokenizer
29
- :members:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/model_doc/bert.rst DELETED
@@ -1,128 +0,0 @@
1
- BERT
2
- ----------------------------------------------------
3
-
4
- ``BertConfig``
5
- ~~~~~~~~~~~~~~~~~~~~~
6
-
7
- .. autoclass:: transformers.BertConfig
8
- :members:
9
-
10
-
11
- ``BertTokenizer``
12
- ~~~~~~~~~~~~~~~~~~~~~
13
-
14
- .. autoclass:: transformers.BertTokenizer
15
- :members:
16
-
17
-
18
- ``BertModel``
19
- ~~~~~~~~~~~~~~~~~~~~
20
-
21
- .. autoclass:: transformers.BertModel
22
- :members:
23
-
24
-
25
- ``BertForPreTraining``
26
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27
-
28
- .. autoclass:: transformers.BertForPreTraining
29
- :members:
30
-
31
-
32
- ``BertForMaskedLM``
33
- ~~~~~~~~~~~~~~~~~~~~~~~~~~
34
-
35
- .. autoclass:: transformers.BertForMaskedLM
36
- :members:
37
-
38
-
39
- ``BertForNextSentencePrediction``
40
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
41
-
42
- .. autoclass:: transformers.BertForNextSentencePrediction
43
- :members:
44
-
45
-
46
- ``BertForSequenceClassification``
47
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
48
-
49
- .. autoclass:: transformers.BertForSequenceClassification
50
- :members:
51
-
52
-
53
- ``BertForMultipleChoice``
54
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
55
-
56
- .. autoclass:: transformers.BertForMultipleChoice
57
- :members:
58
-
59
-
60
- ``BertForTokenClassification``
61
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
62
-
63
- .. autoclass:: transformers.BertForTokenClassification
64
- :members:
65
-
66
-
67
- ``BertForQuestionAnswering``
68
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
69
-
70
- .. autoclass:: transformers.BertForQuestionAnswering
71
- :members:
72
-
73
-
74
- ``TFBertModel``
75
- ~~~~~~~~~~~~~~~~~~~~
76
-
77
- .. autoclass:: transformers.TFBertModel
78
- :members:
79
-
80
-
81
- ``TFBertForPreTraining``
82
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
83
-
84
- .. autoclass:: transformers.TFBertForPreTraining
85
- :members:
86
-
87
-
88
- ``TFBertForMaskedLM``
89
- ~~~~~~~~~~~~~~~~~~~~~~~~~~
90
-
91
- .. autoclass:: transformers.TFBertForMaskedLM
92
- :members:
93
-
94
-
95
- ``TFBertForNextSentencePrediction``
96
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
97
-
98
- .. autoclass:: transformers.TFBertForNextSentencePrediction
99
- :members:
100
-
101
-
102
- ``TFBertForSequenceClassification``
103
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
104
-
105
- .. autoclass:: transformers.TFBertForSequenceClassification
106
- :members:
107
-
108
-
109
- ``TFBertForMultipleChoice``
110
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
111
-
112
- .. autoclass:: transformers.TFBertForMultipleChoice
113
- :members:
114
-
115
-
116
- ``TFBertForTokenClassification``
117
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
118
-
119
- .. autoclass:: transformers.TFBertForTokenClassification
120
- :members:
121
-
122
-
123
- ``TFBertForQuestionAnswering``
124
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
125
-
126
- .. autoclass:: transformers.TFBertForQuestionAnswering
127
- :members:
128
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/model_doc/camembert.rst DELETED
@@ -1,50 +0,0 @@
1
- CamemBERT
2
- ----------------------------------------------------
3
-
4
- ``CamembertConfig``
5
- ~~~~~~~~~~~~~~~~~~~~~
6
-
7
- .. autoclass:: transformers.CamembertConfig
8
- :members:
9
-
10
-
11
- ``CamembertTokenizer``
12
- ~~~~~~~~~~~~~~~~~~~~~
13
-
14
- .. autoclass:: transformers.CamembertTokenizer
15
- :members:
16
-
17
-
18
- ``CamembertModel``
19
- ~~~~~~~~~~~~~~~~~~~~
20
-
21
- .. autoclass:: transformers.CamembertModel
22
- :members:
23
-
24
-
25
- ``CamembertForMaskedLM``
26
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27
-
28
- .. autoclass:: transformers.CamembertForMaskedLM
29
- :members:
30
-
31
-
32
- ``CamembertForSequenceClassification``
33
- ~~~~~~~~~~~~~~~~~~~~~~~~~~
34
-
35
- .. autoclass:: transformers.CamembertForSequenceClassification
36
- :members:
37
-
38
-
39
- ``CamembertForMultipleChoice``
40
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
41
-
42
- .. autoclass:: transformers.CamembertForMultipleChoice
43
- :members:
44
-
45
-
46
- ``CamembertForTokenClassification``
47
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
48
-
49
- .. autoclass:: transformers.CamembertForTokenClassification
50
- :members:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/model_doc/ctrl.rst DELETED
@@ -1,49 +0,0 @@
1
- CTRL
2
- ----------------------------------------------------
3
-
4
- Note: if you fine-tune a CTRL model using the Salesforce code (https://github.com/salesforce/ctrl),
5
- you'll be able to convert from TF to our HuggingFace/Transformers format using the
6
- ``convert_tf_to_huggingface_pytorch.py`` script (see `issue #1654 <https://github.com/huggingface/transformers/issues/1654>`_).
7
-
8
-
9
- ``CTRLConfig``
10
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11
-
12
- .. autoclass:: transformers.CTRLConfig
13
- :members:
14
-
15
-
16
- ``CTRLTokenizer``
17
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
18
-
19
- .. autoclass:: transformers.CTRLTokenizer
20
- :members:
21
-
22
-
23
- ``CTRLModel``
24
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25
-
26
- .. autoclass:: transformers.CTRLModel
27
- :members:
28
-
29
-
30
- ``CTRLLMHeadModel``
31
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
32
-
33
- .. autoclass:: transformers.CTRLLMHeadModel
34
- :members:
35
-
36
-
37
- ``TFCTRLModel``
38
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
39
-
40
- .. autoclass:: transformers.TFCTRLModel
41
- :members:
42
-
43
-
44
- ``TFCTRLLMHeadModel``
45
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
46
-
47
- .. autoclass:: transformers.TFCTRLLMHeadModel
48
- :members:
49
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/model_doc/distilbert.rst DELETED
@@ -1,70 +0,0 @@
1
- DistilBERT
2
- ----------------------------------------------------
3
-
4
- ``DistilBertConfig``
5
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6
-
7
- .. autoclass:: transformers.DistilBertConfig
8
- :members:
9
-
10
-
11
- ``DistilBertTokenizer``
12
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13
-
14
- .. autoclass:: transformers.DistilBertTokenizer
15
- :members:
16
-
17
-
18
- ``DistilBertModel``
19
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
20
-
21
- .. autoclass:: transformers.DistilBertModel
22
- :members:
23
-
24
-
25
- ``DistilBertForMaskedLM``
26
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27
-
28
- .. autoclass:: transformers.DistilBertForMaskedLM
29
- :members:
30
-
31
-
32
- ``DistilBertForSequenceClassification``
33
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
34
-
35
- .. autoclass:: transformers.DistilBertForSequenceClassification
36
- :members:
37
-
38
-
39
- ``DistilBertForQuestionAnswering``
40
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
41
-
42
- .. autoclass:: transformers.DistilBertForQuestionAnswering
43
- :members:
44
-
45
- ``TFDistilBertModel``
46
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
47
-
48
- .. autoclass:: transformers.TFDistilBertModel
49
- :members:
50
-
51
-
52
- ``TFDistilBertForMaskedLM``
53
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
54
-
55
- .. autoclass:: transformers.TFDistilBertForMaskedLM
56
- :members:
57
-
58
-
59
- ``TFDistilBertForSequenceClassification``
60
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
61
-
62
- .. autoclass:: transformers.TFDistilBertForSequenceClassification
63
- :members:
64
-
65
-
66
- ``TFDistilBertForQuestionAnswering``
67
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
68
-
69
- .. autoclass:: transformers.TFDistilBertForQuestionAnswering
70
- :members:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/model_doc/gpt.rst DELETED
@@ -1,57 +0,0 @@
1
- OpenAI GPT
2
- ----------------------------------------------------
3
-
4
- ``OpenAIGPTConfig``
5
- ~~~~~~~~~~~~~~~~~~~~~
6
-
7
- .. autoclass:: transformers.OpenAIGPTConfig
8
- :members:
9
-
10
-
11
- ``OpenAIGPTTokenizer``
12
- ~~~~~~~~~~~~~~~~~~~~~~~~~~
13
-
14
- .. autoclass:: transformers.OpenAIGPTTokenizer
15
- :members:
16
-
17
-
18
- ``OpenAIGPTModel``
19
- ~~~~~~~~~~~~~~~~~~~~~~~~~
20
-
21
- .. autoclass:: transformers.OpenAIGPTModel
22
- :members:
23
-
24
-
25
- ``OpenAIGPTLMHeadModel``
26
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27
-
28
- .. autoclass:: transformers.OpenAIGPTLMHeadModel
29
- :members:
30
-
31
-
32
- ``OpenAIGPTDoubleHeadsModel``
33
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
34
-
35
- .. autoclass:: transformers.OpenAIGPTDoubleHeadsModel
36
- :members:
37
-
38
-
39
- ``TFOpenAIGPTModel``
40
- ~~~~~~~~~~~~~~~~~~~~~~~~~
41
-
42
- .. autoclass:: transformers.TFOpenAIGPTModel
43
- :members:
44
-
45
-
46
- ``TFOpenAIGPTLMHeadModel``
47
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
48
-
49
- .. autoclass:: transformers.TFOpenAIGPTLMHeadModel
50
- :members:
51
-
52
-
53
- ``TFOpenAIGPTDoubleHeadsModel``
54
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
55
-
56
- .. autoclass:: transformers.TFOpenAIGPTDoubleHeadsModel
57
- :members:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/model_doc/gpt2.rst DELETED
@@ -1,57 +0,0 @@
1
- OpenAI GPT2
2
- ----------------------------------------------------
3
-
4
- ``GPT2Config``
5
- ~~~~~~~~~~~~~~~~~~~~~
6
-
7
- .. autoclass:: transformers.GPT2Config
8
- :members:
9
-
10
-
11
- ``GPT2Tokenizer``
12
- ~~~~~~~~~~~~~~~~~~~~~
13
-
14
- .. autoclass:: transformers.GPT2Tokenizer
15
- :members:
16
-
17
-
18
- ``GPT2Model``
19
- ~~~~~~~~~~~~~~~~~~~~~
20
-
21
- .. autoclass:: transformers.GPT2Model
22
- :members:
23
-
24
-
25
- ``GPT2LMHeadModel``
26
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~
27
-
28
- .. autoclass:: transformers.GPT2LMHeadModel
29
- :members:
30
-
31
-
32
- ``GPT2DoubleHeadsModel``
33
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
34
-
35
- .. autoclass:: transformers.GPT2DoubleHeadsModel
36
- :members:
37
-
38
-
39
- ``TFGPT2Model``
40
- ~~~~~~~~~~~~~~~~~~~~~
41
-
42
- .. autoclass:: transformers.TFGPT2Model
43
- :members:
44
-
45
-
46
- ``TFGPT2LMHeadModel``
47
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~
48
-
49
- .. autoclass:: transformers.TFGPT2LMHeadModel
50
- :members:
51
-
52
-
53
- ``TFGPT2DoubleHeadsModel``
54
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
55
-
56
- .. autoclass:: transformers.TFGPT2DoubleHeadsModel
57
- :members:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/model_doc/roberta.rst DELETED
@@ -1,57 +0,0 @@
1
- RoBERTa
2
- ----------------------------------------------------
3
-
4
- ``RobertaConfig``
5
- ~~~~~~~~~~~~~~~~~~~~~
6
-
7
- .. autoclass:: transformers.RobertaConfig
8
- :members:
9
-
10
-
11
- ``RobertaTokenizer``
12
- ~~~~~~~~~~~~~~~~~~~~~
13
-
14
- .. autoclass:: transformers.RobertaTokenizer
15
- :members:
16
-
17
-
18
- ``RobertaModel``
19
- ~~~~~~~~~~~~~~~~~~~~
20
-
21
- .. autoclass:: transformers.RobertaModel
22
- :members:
23
-
24
-
25
- ``RobertaForMaskedLM``
26
- ~~~~~~~~~~~~~~~~~~~~~~~~~~
27
-
28
- .. autoclass:: transformers.RobertaForMaskedLM
29
- :members:
30
-
31
-
32
- ``RobertaForSequenceClassification``
33
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
34
-
35
- .. autoclass:: transformers.RobertaForSequenceClassification
36
- :members:
37
-
38
-
39
- ``TFRobertaModel``
40
- ~~~~~~~~~~~~~~~~~~~~
41
-
42
- .. autoclass:: transformers.TFRobertaModel
43
- :members:
44
-
45
-
46
- ``TFRobertaForMaskedLM``
47
- ~~~~~~~~~~~~~~~~~~~~~~~~~~
48
-
49
- .. autoclass:: transformers.TFRobertaForMaskedLM
50
- :members:
51
-
52
-
53
- ``TFRobertaForSequenceClassification``
54
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
55
-
56
- .. autoclass:: transformers.TFRobertaForSequenceClassification
57
- :members:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/model_doc/transformerxl.rst DELETED
@@ -1,44 +0,0 @@
1
- Transformer XL
2
- ----------------------------------------------------
3
-
4
-
5
- ``TransfoXLConfig``
6
- ~~~~~~~~~~~~~~~~~~~~~
7
-
8
- .. autoclass:: transformers.TransfoXLConfig
9
- :members:
10
-
11
-
12
- ``TransfoXLTokenizer``
13
- ~~~~~~~~~~~~~~~~~~~~~~~~~~
14
-
15
- .. autoclass:: transformers.TransfoXLTokenizer
16
- :members:
17
-
18
-
19
- ``TransfoXLModel``
20
- ~~~~~~~~~~~~~~~~~~~~~~~~~~
21
-
22
- .. autoclass:: transformers.TransfoXLModel
23
- :members:
24
-
25
-
26
- ``TransfoXLLMHeadModel``
27
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28
-
29
- .. autoclass:: transformers.TransfoXLLMHeadModel
30
- :members:
31
-
32
-
33
- ``TFTransfoXLModel``
34
- ~~~~~~~~~~~~~~~~~~~~~~~~~~
35
-
36
- .. autoclass:: transformers.TFTransfoXLModel
37
- :members:
38
-
39
-
40
- ``TFTransfoXLLMHeadModel``
41
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
42
-
43
- .. autoclass:: transformers.TFTransfoXLLMHeadModel
44
- :members:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/model_doc/xlm.rst DELETED
@@ -1,76 +0,0 @@
1
- XLM
2
- ----------------------------------------------------
3
-
4
- ``XLMConfig``
5
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6
-
7
- .. autoclass:: transformers.XLMConfig
8
- :members:
9
-
10
- ``XLMTokenizer``
11
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
12
-
13
- .. autoclass:: transformers.XLMTokenizer
14
- :members:
15
-
16
- ``XLMModel``
17
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
18
-
19
- .. autoclass:: transformers.XLMModel
20
- :members:
21
-
22
-
23
- ``XLMWithLMHeadModel``
24
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25
-
26
- .. autoclass:: transformers.XLMWithLMHeadModel
27
- :members:
28
-
29
-
30
- ``XLMForSequenceClassification``
31
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
32
-
33
- .. autoclass:: transformers.XLMForSequenceClassification
34
- :members:
35
-
36
-
37
- ``XLMForQuestionAnsweringSimple``
38
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
39
-
40
- .. autoclass:: transformers.XLMForQuestionAnsweringSimple
41
- :members:
42
-
43
-
44
- ``XLMForQuestionAnswering``
45
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
46
-
47
- .. autoclass:: transformers.XLMForQuestionAnswering
48
- :members:
49
-
50
-
51
- ``TFXLMModel``
52
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
53
-
54
- .. autoclass:: transformers.TFXLMModel
55
- :members:
56
-
57
-
58
- ``TFXLMWithLMHeadModel``
59
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
60
-
61
- .. autoclass:: transformers.TFXLMWithLMHeadModel
62
- :members:
63
-
64
-
65
- ``TFXLMForSequenceClassification``
66
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
67
-
68
- .. autoclass:: transformers.TFXLMForSequenceClassification
69
- :members:
70
-
71
-
72
- ``TFXLMForQuestionAnsweringSimple``
73
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
74
-
75
- .. autoclass:: transformers.TFXLMForQuestionAnsweringSimple
76
- :members:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/model_doc/xlnet.rst DELETED
@@ -1,92 +0,0 @@
1
- XLNet
2
- ----------------------------------------------------
3
-
4
- ``XLNetConfig``
5
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6
-
7
- .. autoclass:: transformers.XLNetConfig
8
- :members:
9
-
10
-
11
- ``XLNetTokenizer``
12
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13
-
14
- .. autoclass:: transformers.XLNetTokenizer
15
- :members:
16
-
17
-
18
- ``XLNetModel``
19
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
20
-
21
- .. autoclass:: transformers.XLNetModel
22
- :members:
23
-
24
-
25
- ``XLNetLMHeadModel``
26
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27
-
28
- .. autoclass:: transformers.XLNetLMHeadModel
29
- :members:
30
-
31
-
32
- ``XLNetForSequenceClassification``
33
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
34
-
35
- .. autoclass:: transformers.XLNetForSequenceClassification
36
- :members:
37
-
38
-
39
- ``XLNetForTokenClassification``
40
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
41
-
42
- .. autoclass:: transformers.XLNetForTokenClassification
43
- :members:
44
-
45
-
46
- ``XLNetForMultipleChoice``
47
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
48
-
49
- .. autoclass:: transformers.XLNetForMultipleChoice
50
- :members:
51
-
52
-
53
- ``XLNetForQuestionAnsweringSimple``
54
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
55
-
56
- .. autoclass:: transformers.XLNetForQuestionAnsweringSimple
57
- :members:
58
-
59
-
60
- ``XLNetForQuestionAnswering``
61
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
62
-
63
- .. autoclass:: transformers.XLNetForQuestionAnswering
64
- :members:
65
-
66
-
67
- ``TFXLNetModel``
68
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
69
-
70
- .. autoclass:: transformers.TFXLNetModel
71
- :members:
72
-
73
-
74
- ``TFXLNetLMHeadModel``
75
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
76
-
77
- .. autoclass:: transformers.TFXLNetLMHeadModel
78
- :members:
79
-
80
-
81
- ``TFXLNetForSequenceClassification``
82
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
83
-
84
- .. autoclass:: transformers.TFXLNetForSequenceClassification
85
- :members:
86
-
87
-
88
- ``TFXLNetForQuestionAnsweringSimple``
89
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
90
-
91
- .. autoclass:: transformers.TFXLNetForQuestionAnsweringSimple
92
- :members:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/model_sharing.md DELETED
@@ -1,40 +0,0 @@
1
- # Model upload and sharing
2
-
3
- Starting with `v2.2.2`, you can now upload and share your fine-tuned models with the community, using the <abbr title="Command-line interface">CLI</abbr> that's built-in to the library.
4
-
5
- **First, create an account on [https://huggingface.co/join](https://huggingface.co/join)**. Then:
6
-
7
- ```shell
8
- transformers-cli login
9
- # log in using the same credentials as on huggingface.co
10
- ```
11
- Upload your model:
12
- ```shell
13
- transformers-cli upload ./path/to/pretrained_model/
14
-
15
- # ^^ Upload folder containing weights/tokenizer/config
16
- # saved via `.save_pretrained()`
17
-
18
- transformers-cli upload ./config.json [--filename folder/foobar.json]
19
-
20
- # ^^ Upload a single file
21
- # (you can optionally override its filename, which can be nested inside a folder)
22
- ```
23
-
24
- Your model will then be accessible through its identifier, a concatenation of your username and the folder name above:
25
- ```python
26
- "username/pretrained_model"
27
- ```
28
-
29
- Anyone can load it from code:
30
- ```python
31
- tokenizer = AutoTokenizer.from_pretrained("username/pretrained_model")
32
- model = AutoModel.from_pretrained("username/pretrained_model")
33
- ```
34
-
35
- Finally, list all your files on S3:
36
- ```shell
37
- transformers-cli s3 ls
38
- # List all your S3 objects.
39
- ```
40
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server/transformers/docs/source/multilingual.rst DELETED
@@ -1,103 +0,0 @@
1
- Multi-lingual models
2
- ================================================
3
-
4
- Most of the models available in this library are mono-lingual models (English, Chinese and German). A few
5
- multi-lingual models are available and have a different mechanisms than mono-lingual models.
6
- This page details the usage of these models.
7
-
8
- The two models that currently support multiple languages are BERT and XLM.
9
-
10
- XLM
11
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12
-
13
- XLM has a total of 10 different checkpoints, only one of which is mono-lingual. The 9 remaining model checkpoints can
14
- be split in two categories: the checkpoints that make use of language embeddings, and those that don't
15
-
16
- XLM & Language Embeddings
17
- ------------------------------------------------
18
-
19
- This section concerns the following checkpoints:
20
-
21
- - ``xlm-mlm-ende-1024`` (Masked language modeling, English-German)
22
- - ``xlm-mlm-enfr-1024`` (Masked language modeling, English-French)
23
- - ``xlm-mlm-enro-1024`` (Masked language modeling, English-Romanian)
24
- - ``xlm-mlm-xnli15-1024`` (Masked language modeling, XNLI languages)
25
- - ``xlm-mlm-tlm-xnli15-1024`` (Masked language modeling + Translation, XNLI languages)
26
- - ``xlm-clm-enfr-1024`` (Causal language modeling, English-French)
27
- - ``xlm-clm-ende-1024`` (Causal language modeling, English-German)
28
-
29
- These checkpoints require language embeddings that will specify the language used at inference time. These language
30
- embeddings are represented as a tensor that is of the same shape as the input ids passed to the model. The values in
31
- these tensors depend on the language used and are identifiable using the ``lang2id`` and ``id2lang`` attributes
32
- from the tokenizer.
33
-
34
- Here is an example using the ``xlm-clm-enfr-1024`` checkpoint (Causal language modeling, English-French):
35
-
36
-
37
- .. code-block::
38
-
39
- import torch
40
- from transformers import XLMTokenizer, XLMWithLMHeadModel
41
-
42
- tokenizer = XLMTokenizer.from_pretrained("xlm-clm-1024-enfr")
43
-
44
-
45
- The different languages this model/tokenizer handles, as well as the ids of these languages are visible using the
46
- ``lang2id`` attribute:
47
-
48
- .. code-block::
49
-
50
- print(tokenizer.lang2id) # {'en': 0, 'fr': 1}
51
-
52
-
53
- These ids should be used when passing a language parameter during a model pass. Let's define our inputs:
54
-
55
- .. code-block::
56
-
57
- input_ids = torch.tensor([tokenizer.encode("Wikipedia was used to")]) # batch size of 1
58
-
59
-
60
- We should now define the language embedding by using the previously defined language id. We want to create a tensor
61
- filled with the appropriate language ids, of the same size as input_ids. For english, the id is 0:
62
-
63
- .. code-block::
64
-
65
- language_id = tokenizer.lang2id['en'] # 0
66
- langs = torch.tensor([language_id] * input_ids.shape[1]) # torch.tensor([0, 0, 0, ..., 0])
67
-
68
- # We reshape it to be of size (batch_size, sequence_length)
69
- langs = langs.view(1, -1) # is now of shape [1, sequence_length] (we have a batch size of 1)
70
-
71
-
72
- You can then feed it all as input to your model:
73
-
74
- .. code-block::
75
-
76
- outputs = model(input_ids, langs=langs)
77
-
78
-
79
- The example `run_generation.py <https://github.com/huggingface/transformers/blob/master/examples/run_generation.py>`__
80
- can generate text using the CLM checkpoints from XLM, using the language embeddings.
81
-
82
- XLM without Language Embeddings
83
- ------------------------------------------------
84
-
85
- This section concerns the following checkpoints:
86
-
87
- - ``xlm-mlm-17-1280`` (Masked language modeling, 17 languages)
88
- - ``xlm-mlm-100-1280`` (Masked language modeling, 100 languages)
89
-
90
- These checkpoints do not require language embeddings at inference time. These models are used to have generic
91
- sentence representations, differently from previously-mentioned XLM checkpoints.
92
-
93
-
94
- BERT
95
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
96
-
97
- BERT has two checkpoints that can be used for multi-lingual tasks:
98
-
99
- - ``bert-base-multilingual-uncased`` (Masked language modeling + Next sentence prediction, 102 languages)
100
- - ``bert-base-multilingual-cased`` (Masked language modeling + Next sentence prediction, 104 languages)
101
-
102
- These checkpoints do not require language embeddings at inference time. They should identify the language
103
- used in the context and infer accordingly.