Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import unittest | |
from transformers.tokenization_roberta import VOCAB_FILES_NAMES, RobertaTokenizer | |
from .test_tokenization_common import TokenizerTesterMixin | |
from .utils import slow | |
class RobertaTokenizationTest(TokenizerTesterMixin, unittest.TestCase): | |
tokenizer_class = RobertaTokenizer | |
def setUp(self): | |
super().setUp() | |
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt | |
vocab = [ | |
"l", | |
"o", | |
"w", | |
"e", | |
"r", | |
"s", | |
"t", | |
"i", | |
"d", | |
"n", | |
"\u0120", | |
"\u0120l", | |
"\u0120n", | |
"\u0120lo", | |
"\u0120low", | |
"er", | |
"\u0120lowest", | |
"\u0120newer", | |
"\u0120wider", | |
"<unk>", | |
] | |
vocab_tokens = dict(zip(vocab, range(len(vocab)))) | |
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] | |
self.special_tokens_map = {"unk_token": "<unk>"} | |
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) | |
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) | |
with open(self.vocab_file, "w", encoding="utf-8") as fp: | |
fp.write(json.dumps(vocab_tokens) + "\n") | |
with open(self.merges_file, "w", encoding="utf-8") as fp: | |
fp.write("\n".join(merges)) | |
def get_tokenizer(self, **kwargs): | |
kwargs.update(self.special_tokens_map) | |
return RobertaTokenizer.from_pretrained(self.tmpdirname, **kwargs) | |
def get_input_output_texts(self): | |
input_text = "lower newer" | |
output_text = "lower newer" | |
return input_text, output_text | |
def test_full_tokenizer(self): | |
tokenizer = RobertaTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map) | |
text = "lower newer" | |
bpe_tokens = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] | |
tokens = tokenizer.tokenize(text, add_prefix_space=True) | |
self.assertListEqual(tokens, bpe_tokens) | |
input_tokens = tokens + [tokenizer.unk_token] | |
input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19] | |
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) | |
def roberta_dict_integration_testing(self): | |
tokenizer = self.get_tokenizer() | |
self.assertListEqual(tokenizer.encode("Hello world!", add_special_tokens=False), [0, 31414, 232, 328, 2]) | |
self.assertListEqual( | |
tokenizer.encode("Hello world! cécé herlolip 418", add_special_tokens=False), | |
[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2], | |
) | |
def test_sequence_builders(self): | |
tokenizer = RobertaTokenizer.from_pretrained("roberta-base") | |
text = tokenizer.encode("sequence builders", add_special_tokens=False) | |
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) | |
encoded_text_from_decode = tokenizer.encode("sequence builders", add_special_tokens=True) | |
encoded_pair_from_decode = tokenizer.encode( | |
"sequence builders", "multi-sequence build", add_special_tokens=True | |
) | |
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) | |
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) | |
assert encoded_sentence == encoded_text_from_decode | |
assert encoded_pair == encoded_pair_from_decode | |