Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import is_torch_available | |
from .test_configuration_common import ConfigTester | |
from .test_modeling_common import ModelTesterMixin, ids_tensor | |
from .utils import CACHE_DIR, require_torch, slow, torch_device | |
if is_torch_available(): | |
from transformers import ( | |
XLMConfig, | |
XLMModel, | |
XLMWithLMHeadModel, | |
XLMForQuestionAnswering, | |
XLMForSequenceClassification, | |
XLMForQuestionAnsweringSimple, | |
) | |
from transformers.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_MAP | |
class XLMModelTest(ModelTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
XLMModel, | |
XLMWithLMHeadModel, | |
XLMForQuestionAnswering, | |
XLMForSequenceClassification, | |
XLMForQuestionAnsweringSimple, | |
) | |
if is_torch_available() | |
else () | |
) | |
class XLMModelTester(object): | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_input_lengths=True, | |
use_token_type_ids=True, | |
use_labels=True, | |
gelu_activation=True, | |
sinusoidal_embeddings=False, | |
causal=False, | |
asm=False, | |
n_langs=2, | |
vocab_size=99, | |
n_special=0, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
summary_type="last", | |
use_proj=True, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_lengths = use_input_lengths | |
self.use_token_type_ids = use_token_type_ids | |
self.use_labels = use_labels | |
self.gelu_activation = gelu_activation | |
self.sinusoidal_embeddings = sinusoidal_embeddings | |
self.asm = asm | |
self.n_langs = n_langs | |
self.vocab_size = vocab_size | |
self.n_special = n_special | |
self.summary_type = summary_type | |
self.causal = causal | |
self.use_proj = use_proj | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.n_langs = n_langs | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.summary_type = summary_type | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = ids_tensor([self.batch_size, self.seq_length], 2).float() | |
input_lengths = None | |
if self.use_input_lengths: | |
input_lengths = ( | |
ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2 | |
) # small variation of seq_length | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs) | |
sequence_labels = None | |
token_labels = None | |
is_impossible_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
is_impossible_labels = ids_tensor([self.batch_size], 2).float() | |
config = XLMConfig( | |
vocab_size=self.vocab_size, | |
n_special=self.n_special, | |
emb_dim=self.hidden_size, | |
n_layers=self.num_hidden_layers, | |
n_heads=self.num_attention_heads, | |
dropout=self.hidden_dropout_prob, | |
attention_dropout=self.attention_probs_dropout_prob, | |
gelu_activation=self.gelu_activation, | |
sinusoidal_embeddings=self.sinusoidal_embeddings, | |
asm=self.asm, | |
causal=self.causal, | |
n_langs=self.n_langs, | |
max_position_embeddings=self.max_position_embeddings, | |
initializer_range=self.initializer_range, | |
summary_type=self.summary_type, | |
use_proj=self.use_proj, | |
) | |
return ( | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
input_mask, | |
) | |
def check_loss_output(self, result): | |
self.parent.assertListEqual(list(result["loss"].size()), []) | |
def create_and_check_xlm_model( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
input_mask, | |
): | |
model = XLMModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
outputs = model(input_ids, lengths=input_lengths, langs=token_type_ids) | |
outputs = model(input_ids, langs=token_type_ids) | |
outputs = model(input_ids) | |
sequence_output = outputs[0] | |
result = { | |
"sequence_output": sequence_output, | |
} | |
self.parent.assertListEqual( | |
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size] | |
) | |
def create_and_check_xlm_lm_head( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
input_mask, | |
): | |
model = XLMWithLMHeadModel(config) | |
model.to(torch_device) | |
model.eval() | |
loss, logits = model(input_ids, token_type_ids=token_type_ids, labels=token_labels) | |
result = { | |
"loss": loss, | |
"logits": logits, | |
} | |
self.parent.assertListEqual(list(result["loss"].size()), []) | |
self.parent.assertListEqual( | |
list(result["logits"].size()), [self.batch_size, self.seq_length, self.vocab_size] | |
) | |
def create_and_check_xlm_simple_qa( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
input_mask, | |
): | |
model = XLMForQuestionAnsweringSimple(config) | |
model.to(torch_device) | |
model.eval() | |
outputs = model(input_ids) | |
outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels) | |
loss, start_logits, end_logits = outputs | |
result = { | |
"loss": loss, | |
"start_logits": start_logits, | |
"end_logits": end_logits, | |
} | |
self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length]) | |
self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length]) | |
self.check_loss_output(result) | |
def create_and_check_xlm_qa( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
input_mask, | |
): | |
model = XLMForQuestionAnswering(config) | |
model.to(torch_device) | |
model.eval() | |
outputs = model(input_ids) | |
start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = outputs | |
outputs = model( | |
input_ids, | |
start_positions=sequence_labels, | |
end_positions=sequence_labels, | |
cls_index=sequence_labels, | |
is_impossible=is_impossible_labels, | |
p_mask=input_mask, | |
) | |
outputs = model( | |
input_ids, | |
start_positions=sequence_labels, | |
end_positions=sequence_labels, | |
cls_index=sequence_labels, | |
is_impossible=is_impossible_labels, | |
) | |
(total_loss,) = outputs | |
outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels) | |
(total_loss,) = outputs | |
result = { | |
"loss": total_loss, | |
"start_top_log_probs": start_top_log_probs, | |
"start_top_index": start_top_index, | |
"end_top_log_probs": end_top_log_probs, | |
"end_top_index": end_top_index, | |
"cls_logits": cls_logits, | |
} | |
self.parent.assertListEqual(list(result["loss"].size()), []) | |
self.parent.assertListEqual( | |
list(result["start_top_log_probs"].size()), [self.batch_size, model.config.start_n_top] | |
) | |
self.parent.assertListEqual( | |
list(result["start_top_index"].size()), [self.batch_size, model.config.start_n_top] | |
) | |
self.parent.assertListEqual( | |
list(result["end_top_log_probs"].size()), | |
[self.batch_size, model.config.start_n_top * model.config.end_n_top], | |
) | |
self.parent.assertListEqual( | |
list(result["end_top_index"].size()), | |
[self.batch_size, model.config.start_n_top * model.config.end_n_top], | |
) | |
self.parent.assertListEqual(list(result["cls_logits"].size()), [self.batch_size]) | |
def create_and_check_xlm_sequence_classif( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
input_mask, | |
): | |
model = XLMForSequenceClassification(config) | |
model.to(torch_device) | |
model.eval() | |
(logits,) = model(input_ids) | |
loss, logits = model(input_ids, labels=sequence_labels) | |
result = { | |
"loss": loss, | |
"logits": logits, | |
} | |
self.parent.assertListEqual(list(result["loss"].size()), []) | |
self.parent.assertListEqual( | |
list(result["logits"].size()), [self.batch_size, self.type_sequence_label_size] | |
) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
input_mask, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} | |
return config, inputs_dict | |
def setUp(self): | |
self.model_tester = XLMModelTest.XLMModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_xlm_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_xlm_model(*config_and_inputs) | |
def test_xlm_lm_head(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs) | |
def test_xlm_simple_qa(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_xlm_simple_qa(*config_and_inputs) | |
def test_xlm_qa(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_xlm_qa(*config_and_inputs) | |
def test_xlm_sequence_classif(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in list(XLM_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: | |
model = XLMModel.from_pretrained(model_name, cache_dir=CACHE_DIR) | |
self.assertIsNotNone(model) | |