Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import random | |
import unittest | |
from transformers import is_torch_available | |
from .test_configuration_common import ConfigTester | |
from .test_modeling_common import ModelTesterMixin, ids_tensor | |
from .utils import CACHE_DIR, require_torch, slow, torch_device | |
if is_torch_available(): | |
import torch | |
from transformers import TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel | |
from transformers.modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP | |
class TransfoXLModelTest(ModelTesterMixin, unittest.TestCase): | |
all_model_classes = (TransfoXLModel, TransfoXLLMHeadModel) if is_torch_available() else () | |
test_pruning = False | |
test_torchscript = False | |
test_resize_embeddings = False | |
class TransfoXLModelTester(object): | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
mem_len=30, | |
clamp_len=15, | |
is_training=True, | |
use_labels=True, | |
vocab_size=99, | |
cutoffs=[10, 50, 80], | |
hidden_size=32, | |
d_embed=32, | |
num_attention_heads=4, | |
d_head=8, | |
d_inner=128, | |
div_val=2, | |
num_hidden_layers=5, | |
scope=None, | |
seed=1, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.mem_len = mem_len | |
self.key_length = seq_length + mem_len | |
self.clamp_len = clamp_len | |
self.is_training = is_training | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.cutoffs = cutoffs | |
self.hidden_size = hidden_size | |
self.d_embed = d_embed | |
self.num_attention_heads = num_attention_heads | |
self.d_head = d_head | |
self.d_inner = d_inner | |
self.div_val = div_val | |
self.num_hidden_layers = num_hidden_layers | |
self.scope = scope | |
self.seed = seed | |
def prepare_config_and_inputs(self): | |
input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
lm_labels = None | |
if self.use_labels: | |
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
config = TransfoXLConfig( | |
vocab_size=self.vocab_size, | |
mem_len=self.mem_len, | |
clamp_len=self.clamp_len, | |
cutoffs=self.cutoffs, | |
d_model=self.hidden_size, | |
d_embed=self.d_embed, | |
n_head=self.num_attention_heads, | |
d_head=self.d_head, | |
d_inner=self.d_inner, | |
div_val=self.div_val, | |
n_layer=self.num_hidden_layers, | |
) | |
return (config, input_ids_1, input_ids_2, lm_labels) | |
def set_seed(self): | |
random.seed(self.seed) | |
torch.manual_seed(self.seed) | |
def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels): | |
model = TransfoXLModel(config) | |
model.to(torch_device) | |
model.eval() | |
hidden_states_1, mems_1 = model(input_ids_1) | |
hidden_states_2, mems_2 = model(input_ids_2, mems_1) | |
outputs = { | |
"hidden_states_1": hidden_states_1, | |
"mems_1": mems_1, | |
"hidden_states_2": hidden_states_2, | |
"mems_2": mems_2, | |
} | |
return outputs | |
def check_transfo_xl_model_output(self, result): | |
self.parent.assertListEqual( | |
list(result["hidden_states_1"].size()), [self.batch_size, self.seq_length, self.hidden_size] | |
) | |
self.parent.assertListEqual( | |
list(result["hidden_states_2"].size()), [self.batch_size, self.seq_length, self.hidden_size] | |
) | |
self.parent.assertListEqual( | |
list(list(mem.size()) for mem in result["mems_1"]), | |
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers, | |
) | |
self.parent.assertListEqual( | |
list(list(mem.size()) for mem in result["mems_2"]), | |
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers, | |
) | |
def create_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels): | |
model = TransfoXLLMHeadModel(config) | |
model.to(torch_device) | |
model.eval() | |
lm_logits_1, mems_1 = model(input_ids_1) | |
loss_1, _, mems_1 = model(input_ids_1, labels=lm_labels) | |
lm_logits_2, mems_2 = model(input_ids_2, mems=mems_1) | |
loss_2, _, mems_2 = model(input_ids_2, labels=lm_labels, mems=mems_1) | |
outputs = { | |
"loss_1": loss_1, | |
"mems_1": mems_1, | |
"lm_logits_1": lm_logits_1, | |
"loss_2": loss_2, | |
"mems_2": mems_2, | |
"lm_logits_2": lm_logits_2, | |
} | |
return outputs | |
def check_transfo_xl_lm_head_output(self, result): | |
self.parent.assertListEqual(list(result["loss_1"].size()), [self.batch_size, self.seq_length]) | |
self.parent.assertListEqual( | |
list(result["lm_logits_1"].size()), [self.batch_size, self.seq_length, self.vocab_size] | |
) | |
self.parent.assertListEqual( | |
list(list(mem.size()) for mem in result["mems_1"]), | |
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers, | |
) | |
self.parent.assertListEqual(list(result["loss_2"].size()), [self.batch_size, self.seq_length]) | |
self.parent.assertListEqual( | |
list(result["lm_logits_2"].size()), [self.batch_size, self.seq_length, self.vocab_size] | |
) | |
self.parent.assertListEqual( | |
list(list(mem.size()) for mem in result["mems_2"]), | |
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers, | |
) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
(config, input_ids_1, input_ids_2, lm_labels) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids_1} | |
return config, inputs_dict | |
def setUp(self): | |
self.model_tester = TransfoXLModelTest.TransfoXLModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=TransfoXLConfig, d_embed=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_transfo_xl_model(self): | |
self.model_tester.set_seed() | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
output_result = self.model_tester.create_transfo_xl_model(*config_and_inputs) | |
self.model_tester.check_transfo_xl_model_output(output_result) | |
def test_transfo_xl_lm_head(self): | |
self.model_tester.set_seed() | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
output_result = self.model_tester.create_transfo_xl_lm_head(*config_and_inputs) | |
self.model_tester.check_transfo_xl_lm_head_output(output_result) | |
def test_model_from_pretrained(self): | |
for model_name in list(TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: | |
model = TransfoXLModel.from_pretrained(model_name, cache_dir=CACHE_DIR) | |
self.assertIsNotNone(model) | |