Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import logging | |
import unittest | |
from transformers import is_tf_available | |
from .utils import DUMMY_UNKWOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, require_tf, slow | |
if is_tf_available(): | |
from transformers import ( | |
AutoConfig, | |
BertConfig, | |
TFAutoModel, | |
TFBertModel, | |
TFAutoModelWithLMHead, | |
TFBertForMaskedLM, | |
TFRobertaForMaskedLM, | |
TFAutoModelForSequenceClassification, | |
TFBertForSequenceClassification, | |
TFAutoModelForQuestionAnswering, | |
TFBertForQuestionAnswering, | |
) | |
class TFAutoModelTest(unittest.TestCase): | |
def test_model_from_pretrained(self): | |
import h5py | |
self.assertTrue(h5py.version.hdf5_version.startswith("1.10")) | |
logging.basicConfig(level=logging.INFO) | |
# for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: | |
for model_name in ["bert-base-uncased"]: | |
config = AutoConfig.from_pretrained(model_name) | |
self.assertIsNotNone(config) | |
self.assertIsInstance(config, BertConfig) | |
model = TFAutoModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
self.assertIsInstance(model, TFBertModel) | |
def test_lmhead_model_from_pretrained(self): | |
logging.basicConfig(level=logging.INFO) | |
# for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: | |
for model_name in ["bert-base-uncased"]: | |
config = AutoConfig.from_pretrained(model_name) | |
self.assertIsNotNone(config) | |
self.assertIsInstance(config, BertConfig) | |
model = TFAutoModelWithLMHead.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
self.assertIsInstance(model, TFBertForMaskedLM) | |
def test_sequence_classification_model_from_pretrained(self): | |
logging.basicConfig(level=logging.INFO) | |
# for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: | |
for model_name in ["bert-base-uncased"]: | |
config = AutoConfig.from_pretrained(model_name) | |
self.assertIsNotNone(config) | |
self.assertIsInstance(config, BertConfig) | |
model = TFAutoModelForSequenceClassification.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
self.assertIsInstance(model, TFBertForSequenceClassification) | |
def test_question_answering_model_from_pretrained(self): | |
logging.basicConfig(level=logging.INFO) | |
# for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: | |
for model_name in ["bert-base-uncased"]: | |
config = AutoConfig.from_pretrained(model_name) | |
self.assertIsNotNone(config) | |
self.assertIsInstance(config, BertConfig) | |
model = TFAutoModelForQuestionAnswering.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
self.assertIsInstance(model, TFBertForQuestionAnswering) | |
def test_from_pretrained_identifier(self): | |
logging.basicConfig(level=logging.INFO) | |
model = TFAutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER) | |
self.assertIsInstance(model, TFBertForMaskedLM) | |
self.assertEqual(model.num_parameters(), 14830) | |
self.assertEqual(model.num_parameters(only_trainable=True), 14830) | |
def test_from_identifier_from_model_type(self): | |
logging.basicConfig(level=logging.INFO) | |
model = TFAutoModelWithLMHead.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER) | |
self.assertIsInstance(model, TFRobertaForMaskedLM) | |
self.assertEqual(model.num_parameters(), 14830) | |
self.assertEqual(model.num_parameters(only_trainable=True), 14830) | |