Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import is_torch_available | |
from .test_configuration_common import ConfigTester | |
from .test_modeling_common import ModelTesterMixin, ids_tensor | |
from .utils import CACHE_DIR, require_torch, slow, torch_device | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
RobertaConfig, | |
RobertaModel, | |
RobertaForMaskedLM, | |
RobertaForSequenceClassification, | |
RobertaForTokenClassification, | |
) | |
from transformers.modeling_roberta import RobertaEmbeddings | |
from transformers.modeling_roberta import ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP | |
class RobertaModelTest(ModelTesterMixin, unittest.TestCase): | |
all_model_classes = (RobertaForMaskedLM, RobertaModel) if is_torch_available() else () | |
class RobertaModelTester(object): | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_token_type_ids=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_token_type_ids = use_token_type_ids | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = RobertaConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_range=self.initializer_range, | |
) | |
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
def check_loss_output(self, result): | |
self.parent.assertListEqual(list(result["loss"].size()), []) | |
def create_and_check_roberta_model( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = RobertaModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids) | |
sequence_output, pooled_output = model(input_ids) | |
result = { | |
"sequence_output": sequence_output, | |
"pooled_output": pooled_output, | |
} | |
self.parent.assertListEqual( | |
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size] | |
) | |
self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size]) | |
def create_and_check_roberta_for_masked_lm( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = RobertaForMaskedLM(config=config) | |
model.to(torch_device) | |
model.eval() | |
loss, prediction_scores = model( | |
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels | |
) | |
result = { | |
"loss": loss, | |
"prediction_scores": prediction_scores, | |
} | |
self.parent.assertListEqual( | |
list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size] | |
) | |
self.check_loss_output(result) | |
def create_and_check_roberta_for_token_classification( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_labels = self.num_labels | |
model = RobertaForTokenClassification(config=config) | |
model.to(torch_device) | |
model.eval() | |
loss, logits = model( | |
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels | |
) | |
result = { | |
"loss": loss, | |
"logits": logits, | |
} | |
self.parent.assertListEqual( | |
list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels] | |
) | |
self.check_loss_output(result) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
def setUp(self): | |
self.model_tester = RobertaModelTest.RobertaModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_roberta_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_roberta_model(*config_and_inputs) | |
def test_for_masked_lm(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_roberta_for_masked_lm(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in list(ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: | |
model = RobertaModel.from_pretrained(model_name, cache_dir=CACHE_DIR) | |
self.assertIsNotNone(model) | |
def test_create_position_ids_respects_padding_index(self): | |
""" Ensure that the default position ids only assign a sequential . This is a regression | |
test for https://github.com/huggingface/transformers/issues/1761 | |
The position ids should be masked with the embedding object's padding index. Therefore, the | |
first available non-padding position index is RobertaEmbeddings.padding_idx + 1 | |
""" | |
config = self.model_tester.prepare_config_and_inputs()[0] | |
model = RobertaEmbeddings(config=config) | |
input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]]) | |
expected_positions = torch.as_tensor( | |
[[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]] | |
) | |
position_ids = model.create_position_ids_from_input_ids(input_ids) | |
self.assertEqual(position_ids.shape, expected_positions.shape) | |
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) | |
def test_create_position_ids_from_inputs_embeds(self): | |
""" Ensure that the default position ids only assign a sequential . This is a regression | |
test for https://github.com/huggingface/transformers/issues/1761 | |
The position ids should be masked with the embedding object's padding index. Therefore, the | |
first available non-padding position index is RobertaEmbeddings.padding_idx + 1 | |
""" | |
config = self.model_tester.prepare_config_and_inputs()[0] | |
embeddings = RobertaEmbeddings(config=config) | |
inputs_embeds = torch.Tensor(2, 4, 30) | |
expected_single_positions = [ | |
0 + embeddings.padding_idx + 1, | |
1 + embeddings.padding_idx + 1, | |
2 + embeddings.padding_idx + 1, | |
3 + embeddings.padding_idx + 1, | |
] | |
expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions]) | |
position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds) | |
self.assertEqual(position_ids.shape, expected_positions.shape) | |
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) | |
class RobertaModelIntegrationTest(unittest.TestCase): | |
def test_inference_masked_lm(self): | |
model = RobertaForMaskedLM.from_pretrained("roberta-base") | |
input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) | |
output = model(input_ids)[0] | |
expected_shape = torch.Size((1, 11, 50265)) | |
self.assertEqual(output.shape, expected_shape) | |
# compare the actual values for a slice. | |
expected_slice = torch.Tensor( | |
[[[33.8843, -4.3107, 22.7779], [4.6533, -2.8099, 13.6252], [1.8222, -3.6898, 8.8600]]] | |
) | |
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-3)) | |
def test_inference_no_head(self): | |
model = RobertaModel.from_pretrained("roberta-base") | |
input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) | |
output = model(input_ids)[0] | |
# compare the actual values for a slice. | |
expected_slice = torch.Tensor( | |
[[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0539, -0.0174], [0.0548, 0.0799, 0.1687]]] | |
) | |
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-3)) | |
def test_inference_classification_head(self): | |
model = RobertaForSequenceClassification.from_pretrained("roberta-large-mnli") | |
input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) | |
output = model(input_ids)[0] | |
expected_shape = torch.Size((1, 3)) | |
self.assertEqual(output.shape, expected_shape) | |
expected_tensor = torch.Tensor([[-0.9469, 0.3913, 0.5118]]) | |
self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-3)) | |