Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import is_torch_available | |
from .test_configuration_common import ConfigTester | |
from .test_modeling_common import ModelTesterMixin, ids_tensor | |
from .utils import CACHE_DIR, require_torch, slow, torch_device | |
if is_torch_available(): | |
from transformers import ( | |
GPT2Config, | |
GPT2Model, | |
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP, | |
GPT2LMHeadModel, | |
GPT2DoubleHeadsModel, | |
) | |
class GPT2ModelTest(ModelTesterMixin, unittest.TestCase): | |
all_model_classes = (GPT2Model, GPT2LMHeadModel, GPT2DoubleHeadsModel) if is_torch_available() else () | |
class GPT2ModelTester(object): | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_token_type_ids=True, | |
use_input_mask=True, | |
use_labels=True, | |
use_mc_token_ids=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_token_type_ids = use_token_type_ids | |
self.use_input_mask = use_input_mask | |
self.use_labels = use_labels | |
self.use_mc_token_ids = use_mc_token_ids | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
mc_token_ids = None | |
if self.use_mc_token_ids: | |
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = GPT2Config( | |
vocab_size=self.vocab_size, | |
n_embd=self.hidden_size, | |
n_layer=self.num_hidden_layers, | |
n_head=self.num_attention_heads, | |
# intermediate_size=self.intermediate_size, | |
# hidden_act=self.hidden_act, | |
# hidden_dropout_prob=self.hidden_dropout_prob, | |
# attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
n_positions=self.max_position_embeddings, | |
n_ctx=self.max_position_embeddings | |
# type_vocab_size=self.type_vocab_size, | |
# initializer_range=self.initializer_range | |
) | |
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) | |
return ( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
mc_token_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) | |
def check_loss_output(self, result): | |
self.parent.assertListEqual(list(result["loss"].size()), []) | |
def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): | |
model = GPT2Model(config=config) | |
model.to(torch_device) | |
model.eval() | |
model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask) | |
model(input_ids, token_type_ids=token_type_ids) | |
sequence_output, presents = model(input_ids) | |
result = { | |
"sequence_output": sequence_output, | |
"presents": presents, | |
} | |
self.parent.assertListEqual( | |
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size] | |
) | |
self.parent.assertEqual(len(result["presents"]), config.n_layer) | |
def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): | |
model = GPT2LMHeadModel(config) | |
model.to(torch_device) | |
model.eval() | |
loss, lm_logits, _ = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) | |
result = {"loss": loss, "lm_logits": lm_logits} | |
self.parent.assertListEqual(list(result["loss"].size()), []) | |
self.parent.assertListEqual( | |
list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size] | |
) | |
def create_and_check_double_lm_head_model( | |
self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args | |
): | |
model = GPT2DoubleHeadsModel(config) | |
model.to(torch_device) | |
model.eval() | |
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
inputs = { | |
"input_ids": multiple_choice_inputs_ids, | |
"mc_token_ids": mc_token_ids, | |
"attention_mask": multiple_choice_input_mask, | |
"token_type_ids": multiple_choice_token_type_ids, | |
"lm_labels": multiple_choice_inputs_ids, | |
} | |
loss, lm_logits, mc_logits, _ = model(**inputs) | |
result = {"loss": loss, "lm_logits": lm_logits, "mc_logits": mc_logits} | |
self.parent.assertListEqual(list(result["loss"].size()), []) | |
self.parent.assertListEqual( | |
list(result["lm_logits"].size()), [self.batch_size, self.num_choices, self.seq_length, self.vocab_size] | |
) | |
self.parent.assertListEqual(list(result["mc_logits"].size()), [self.batch_size, self.num_choices]) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
mc_token_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} | |
return config, inputs_dict | |
def setUp(self): | |
self.model_tester = GPT2ModelTest.GPT2ModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_gpt2_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_gpt2_model(*config_and_inputs) | |
def test_gpt2_lm_head_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_lm_head_model(*config_and_inputs) | |
def test_gpt2_double_lm_head_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in list(GPT2_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: | |
model = GPT2Model.from_pretrained(model_name, cache_dir=CACHE_DIR) | |
self.assertIsNotNone(model) | |