Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| # coding=utf-8 | |
| # Copyright 2018 The Hugging Face Inc. Team | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import logging | |
| import unittest | |
| from transformers import is_torch_available | |
| from .utils import require_torch, slow | |
| if is_torch_available(): | |
| from transformers import BertModel, BertForMaskedLM, Model2Model | |
| from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP | |
| class EncoderDecoderModelTest(unittest.TestCase): | |
| def test_model2model_from_pretrained(self): | |
| logging.basicConfig(level=logging.INFO) | |
| for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: | |
| model = Model2Model.from_pretrained(model_name) | |
| self.assertIsInstance(model.encoder, BertModel) | |
| self.assertIsInstance(model.decoder, BertForMaskedLM) | |
| self.assertEqual(model.decoder.config.is_decoder, True) | |
| self.assertEqual(model.encoder.config.is_decoder, False) | |
| def test_model2model_from_pretrained_not_bert(self): | |
| logging.basicConfig(level=logging.INFO) | |
| with self.assertRaises(ValueError): | |
| _ = Model2Model.from_pretrained("roberta") | |
| with self.assertRaises(ValueError): | |
| _ = Model2Model.from_pretrained("distilbert") | |
| with self.assertRaises(ValueError): | |
| _ = Model2Model.from_pretrained("does-not-exist") | |