Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| # coding=utf-8 | |
| # Copyright 2018 The Google AI Language Team Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import logging | |
| import unittest | |
| from transformers import is_torch_available | |
| from .utils import DUMMY_UNKWOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, require_torch, slow | |
| if is_torch_available(): | |
| from transformers import ( | |
| AutoConfig, | |
| BertConfig, | |
| AutoModel, | |
| BertModel, | |
| AutoModelWithLMHead, | |
| BertForMaskedLM, | |
| RobertaForMaskedLM, | |
| AutoModelForSequenceClassification, | |
| BertForSequenceClassification, | |
| AutoModelForQuestionAnswering, | |
| BertForQuestionAnswering, | |
| ) | |
| from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP | |
| class AutoModelTest(unittest.TestCase): | |
| def test_model_from_pretrained(self): | |
| logging.basicConfig(level=logging.INFO) | |
| for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: | |
| config = AutoConfig.from_pretrained(model_name) | |
| self.assertIsNotNone(config) | |
| self.assertIsInstance(config, BertConfig) | |
| model = AutoModel.from_pretrained(model_name) | |
| model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True) | |
| self.assertIsNotNone(model) | |
| self.assertIsInstance(model, BertModel) | |
| for value in loading_info.values(): | |
| self.assertEqual(len(value), 0) | |
| def test_lmhead_model_from_pretrained(self): | |
| logging.basicConfig(level=logging.INFO) | |
| for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: | |
| config = AutoConfig.from_pretrained(model_name) | |
| self.assertIsNotNone(config) | |
| self.assertIsInstance(config, BertConfig) | |
| model = AutoModelWithLMHead.from_pretrained(model_name) | |
| model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True) | |
| self.assertIsNotNone(model) | |
| self.assertIsInstance(model, BertForMaskedLM) | |
| def test_sequence_classification_model_from_pretrained(self): | |
| logging.basicConfig(level=logging.INFO) | |
| for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: | |
| config = AutoConfig.from_pretrained(model_name) | |
| self.assertIsNotNone(config) | |
| self.assertIsInstance(config, BertConfig) | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| model, loading_info = AutoModelForSequenceClassification.from_pretrained( | |
| model_name, output_loading_info=True | |
| ) | |
| self.assertIsNotNone(model) | |
| self.assertIsInstance(model, BertForSequenceClassification) | |
| # @slow | |
| def test_question_answering_model_from_pretrained(self): | |
| logging.basicConfig(level=logging.INFO) | |
| for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: | |
| config = AutoConfig.from_pretrained(model_name) | |
| self.assertIsNotNone(config) | |
| self.assertIsInstance(config, BertConfig) | |
| model = AutoModelForQuestionAnswering.from_pretrained(model_name) | |
| model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True) | |
| self.assertIsNotNone(model) | |
| self.assertIsInstance(model, BertForQuestionAnswering) | |
| def test_from_pretrained_identifier(self): | |
| logging.basicConfig(level=logging.INFO) | |
| model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER) | |
| self.assertIsInstance(model, BertForMaskedLM) | |
| self.assertEqual(model.num_parameters(), 14830) | |
| self.assertEqual(model.num_parameters(only_trainable=True), 14830) | |
| def test_from_identifier_from_model_type(self): | |
| logging.basicConfig(level=logging.INFO) | |
| model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER) | |
| self.assertIsInstance(model, RobertaForMaskedLM) | |
| self.assertEqual(model.num_parameters(), 14830) | |
| self.assertEqual(model.num_parameters(only_trainable=True), 14830) | |