Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import logging | |
import unittest | |
from transformers import is_torch_available | |
from .utils import DUMMY_UNKWOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, require_torch, slow | |
if is_torch_available(): | |
from transformers import ( | |
AutoConfig, | |
BertConfig, | |
AutoModel, | |
BertModel, | |
AutoModelWithLMHead, | |
BertForMaskedLM, | |
RobertaForMaskedLM, | |
AutoModelForSequenceClassification, | |
BertForSequenceClassification, | |
AutoModelForQuestionAnswering, | |
BertForQuestionAnswering, | |
) | |
from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP | |
class AutoModelTest(unittest.TestCase): | |
def test_model_from_pretrained(self): | |
logging.basicConfig(level=logging.INFO) | |
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: | |
config = AutoConfig.from_pretrained(model_name) | |
self.assertIsNotNone(config) | |
self.assertIsInstance(config, BertConfig) | |
model = AutoModel.from_pretrained(model_name) | |
model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True) | |
self.assertIsNotNone(model) | |
self.assertIsInstance(model, BertModel) | |
for value in loading_info.values(): | |
self.assertEqual(len(value), 0) | |
def test_lmhead_model_from_pretrained(self): | |
logging.basicConfig(level=logging.INFO) | |
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: | |
config = AutoConfig.from_pretrained(model_name) | |
self.assertIsNotNone(config) | |
self.assertIsInstance(config, BertConfig) | |
model = AutoModelWithLMHead.from_pretrained(model_name) | |
model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True) | |
self.assertIsNotNone(model) | |
self.assertIsInstance(model, BertForMaskedLM) | |
def test_sequence_classification_model_from_pretrained(self): | |
logging.basicConfig(level=logging.INFO) | |
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: | |
config = AutoConfig.from_pretrained(model_name) | |
self.assertIsNotNone(config) | |
self.assertIsInstance(config, BertConfig) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
model, loading_info = AutoModelForSequenceClassification.from_pretrained( | |
model_name, output_loading_info=True | |
) | |
self.assertIsNotNone(model) | |
self.assertIsInstance(model, BertForSequenceClassification) | |
# @slow | |
def test_question_answering_model_from_pretrained(self): | |
logging.basicConfig(level=logging.INFO) | |
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: | |
config = AutoConfig.from_pretrained(model_name) | |
self.assertIsNotNone(config) | |
self.assertIsInstance(config, BertConfig) | |
model = AutoModelForQuestionAnswering.from_pretrained(model_name) | |
model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True) | |
self.assertIsNotNone(model) | |
self.assertIsInstance(model, BertForQuestionAnswering) | |
def test_from_pretrained_identifier(self): | |
logging.basicConfig(level=logging.INFO) | |
model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER) | |
self.assertIsInstance(model, BertForMaskedLM) | |
self.assertEqual(model.num_parameters(), 14830) | |
self.assertEqual(model.num_parameters(only_trainable=True), 14830) | |
def test_from_identifier_from_model_type(self): | |
logging.basicConfig(level=logging.INFO) | |
model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER) | |
self.assertIsInstance(model, RobertaForMaskedLM) | |
self.assertEqual(model.num_parameters(), 14830) | |
self.assertEqual(model.num_parameters(only_trainable=True), 14830) | |