Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
#! /usr/bin/env python3 | |
# coding=utf-8 | |
# Copyright (c) 2019 Uber Technologies, Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import csv | |
import json | |
import math | |
import time | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torch.optim as optim | |
import torch.utils.data as data | |
from nltk.tokenize.treebank import TreebankWordDetokenizer | |
from torchtext import data as torchtext_data | |
from torchtext import datasets | |
from tqdm import tqdm, trange | |
from pplm_classification_head import ClassificationHead | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
torch.manual_seed(0) | |
np.random.seed(0) | |
EPSILON = 1e-10 | |
example_sentence = "This is incredible! I love it, this is the best chicken I have ever had." | |
max_length_seq = 100 | |
class Discriminator(torch.nn.Module): | |
"""Transformer encoder followed by a Classification Head""" | |
def __init__(self, class_size, pretrained_model="gpt2-medium", cached_mode=False, device="cpu"): | |
super().__init__() | |
self.tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model) | |
self.encoder = GPT2LMHeadModel.from_pretrained(pretrained_model) | |
self.embed_size = self.encoder.transformer.config.hidden_size | |
self.classifier_head = ClassificationHead(class_size=class_size, embed_size=self.embed_size) | |
self.cached_mode = cached_mode | |
self.device = device | |
def get_classifier(self): | |
return self.classifier_head | |
def train_custom(self): | |
for param in self.encoder.parameters(): | |
param.requires_grad = False | |
self.classifier_head.train() | |
def avg_representation(self, x): | |
mask = x.ne(0).unsqueeze(2).repeat(1, 1, self.embed_size).float().to(self.device).detach() | |
hidden, _ = self.encoder.transformer(x) | |
masked_hidden = hidden * mask | |
avg_hidden = torch.sum(masked_hidden, dim=1) / (torch.sum(mask, dim=1).detach() + EPSILON) | |
return avg_hidden | |
def forward(self, x): | |
if self.cached_mode: | |
avg_hidden = x.to(self.device) | |
else: | |
avg_hidden = self.avg_representation(x.to(self.device)) | |
logits = self.classifier_head(avg_hidden) | |
probs = F.log_softmax(logits, dim=-1) | |
return probs | |
class Dataset(data.Dataset): | |
def __init__(self, X, y): | |
"""Reads source and target sequences from txt files.""" | |
self.X = X | |
self.y = y | |
def __len__(self): | |
return len(self.X) | |
def __getitem__(self, index): | |
"""Returns one data pair (source and target).""" | |
data = {} | |
data["X"] = self.X[index] | |
data["y"] = self.y[index] | |
return data | |
def collate_fn(data): | |
def pad_sequences(sequences): | |
lengths = [len(seq) for seq in sequences] | |
padded_sequences = torch.zeros(len(sequences), max(lengths)).long() # padding value = 0 | |
for i, seq in enumerate(sequences): | |
end = lengths[i] | |
padded_sequences[i, :end] = seq[:end] | |
return padded_sequences, lengths | |
item_info = {} | |
for key in data[0].keys(): | |
item_info[key] = [d[key] for d in data] | |
x_batch, _ = pad_sequences(item_info["X"]) | |
y_batch = torch.tensor(item_info["y"], dtype=torch.long) | |
return x_batch, y_batch | |
def cached_collate_fn(data): | |
item_info = {} | |
for key in data[0].keys(): | |
item_info[key] = [d[key] for d in data] | |
x_batch = torch.cat(item_info["X"], 0) | |
y_batch = torch.tensor(item_info["y"], dtype=torch.long) | |
return x_batch, y_batch | |
def train_epoch(data_loader, discriminator, optimizer, epoch=0, log_interval=10, device="cpu"): | |
samples_so_far = 0 | |
discriminator.train_custom() | |
for batch_idx, (input_t, target_t) in enumerate(data_loader): | |
input_t, target_t = input_t.to(device), target_t.to(device) | |
optimizer.zero_grad() | |
output_t = discriminator(input_t) | |
loss = F.nll_loss(output_t, target_t) | |
loss.backward(retain_graph=True) | |
optimizer.step() | |
samples_so_far += len(input_t) | |
if batch_idx % log_interval == 0: | |
print( | |
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( | |
epoch + 1, | |
samples_so_far, | |
len(data_loader.dataset), | |
100 * samples_so_far / len(data_loader.dataset), | |
loss.item(), | |
) | |
) | |
def evaluate_performance(data_loader, discriminator, device="cpu"): | |
discriminator.eval() | |
test_loss = 0 | |
correct = 0 | |
with torch.no_grad(): | |
for input_t, target_t in data_loader: | |
input_t, target_t = input_t.to(device), target_t.to(device) | |
output_t = discriminator(input_t) | |
# sum up batch loss | |
test_loss += F.nll_loss(output_t, target_t, reduction="sum").item() | |
# get the index of the max log-probability | |
pred_t = output_t.argmax(dim=1, keepdim=True) | |
correct += pred_t.eq(target_t.view_as(pred_t)).sum().item() | |
test_loss /= len(data_loader.dataset) | |
print( | |
"Performance on test set: " | |
"Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)".format( | |
test_loss, correct, len(data_loader.dataset), 100.0 * correct / len(data_loader.dataset) | |
) | |
) | |
def predict(input_sentence, model, classes, cached=False, device="cpu"): | |
input_t = model.tokenizer.encode(input_sentence) | |
input_t = torch.tensor([input_t], dtype=torch.long, device=device) | |
if cached: | |
input_t = model.avg_representation(input_t) | |
log_probs = model(input_t).data.cpu().numpy().flatten().tolist() | |
print("Input sentence:", input_sentence) | |
print( | |
"Predictions:", | |
", ".join("{}: {:.4f}".format(c, math.exp(log_prob)) for c, log_prob in zip(classes, log_probs)), | |
) | |
def get_cached_data_loader(dataset, batch_size, discriminator, shuffle=False, device="cpu"): | |
data_loader = torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, collate_fn=collate_fn) | |
xs = [] | |
ys = [] | |
for batch_idx, (x, y) in enumerate(tqdm(data_loader, ascii=True)): | |
with torch.no_grad(): | |
x = x.to(device) | |
avg_rep = discriminator.avg_representation(x).cpu().detach() | |
avg_rep_list = torch.unbind(avg_rep.unsqueeze(1)) | |
xs += avg_rep_list | |
ys += y.cpu().numpy().tolist() | |
data_loader = torch.utils.data.DataLoader( | |
dataset=Dataset(xs, ys), batch_size=batch_size, shuffle=shuffle, collate_fn=cached_collate_fn | |
) | |
return data_loader | |
def train_discriminator( | |
dataset, | |
dataset_fp=None, | |
pretrained_model="gpt2-medium", | |
epochs=10, | |
batch_size=64, | |
log_interval=10, | |
save_model=False, | |
cached=False, | |
no_cuda=False, | |
): | |
device = "cuda" if torch.cuda.is_available() and not no_cuda else "cpu" | |
print("Preprocessing {} dataset...".format(dataset)) | |
start = time.time() | |
if dataset == "SST": | |
idx2class = ["positive", "negative", "very positive", "very negative", "neutral"] | |
class2idx = {c: i for i, c in enumerate(idx2class)} | |
discriminator = Discriminator( | |
class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device | |
).to(device) | |
text = torchtext_data.Field() | |
label = torchtext_data.Field(sequential=False) | |
train_data, val_data, test_data = datasets.SST.splits(text, label, fine_grained=True, train_subtrees=True,) | |
x = [] | |
y = [] | |
for i in trange(len(train_data), ascii=True): | |
seq = TreebankWordDetokenizer().detokenize(vars(train_data[i])["text"]) | |
seq = discriminator.tokenizer.encode(seq) | |
seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) | |
x.append(seq) | |
y.append(class2idx[vars(train_data[i])["label"]]) | |
train_dataset = Dataset(x, y) | |
test_x = [] | |
test_y = [] | |
for i in trange(len(test_data), ascii=True): | |
seq = TreebankWordDetokenizer().detokenize(vars(test_data[i])["text"]) | |
seq = discriminator.tokenizer.encode(seq) | |
seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) | |
test_x.append(seq) | |
test_y.append(class2idx[vars(test_data[i])["label"]]) | |
test_dataset = Dataset(test_x, test_y) | |
discriminator_meta = { | |
"class_size": len(idx2class), | |
"embed_size": discriminator.embed_size, | |
"pretrained_model": pretrained_model, | |
"class_vocab": class2idx, | |
"default_class": 2, | |
} | |
elif dataset == "clickbait": | |
idx2class = ["non_clickbait", "clickbait"] | |
class2idx = {c: i for i, c in enumerate(idx2class)} | |
discriminator = Discriminator( | |
class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device | |
).to(device) | |
with open("datasets/clickbait/clickbait_train_prefix.txt") as f: | |
data = [] | |
for i, line in enumerate(f): | |
try: | |
data.append(eval(line)) | |
except Exception: | |
print("Error evaluating line {}: {}".format(i, line)) | |
continue | |
x = [] | |
y = [] | |
with open("datasets/clickbait/clickbait_train_prefix.txt") as f: | |
for i, line in enumerate(tqdm(f, ascii=True)): | |
try: | |
d = eval(line) | |
seq = discriminator.tokenizer.encode(d["text"]) | |
if len(seq) < max_length_seq: | |
seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) | |
else: | |
print("Line {} is longer than maximum length {}".format(i, max_length_seq)) | |
continue | |
x.append(seq) | |
y.append(d["label"]) | |
except Exception: | |
print("Error evaluating / tokenizing" " line {}, skipping it".format(i)) | |
pass | |
full_dataset = Dataset(x, y) | |
train_size = int(0.9 * len(full_dataset)) | |
test_size = len(full_dataset) - train_size | |
train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size]) | |
discriminator_meta = { | |
"class_size": len(idx2class), | |
"embed_size": discriminator.embed_size, | |
"pretrained_model": pretrained_model, | |
"class_vocab": class2idx, | |
"default_class": 1, | |
} | |
elif dataset == "toxic": | |
idx2class = ["non_toxic", "toxic"] | |
class2idx = {c: i for i, c in enumerate(idx2class)} | |
discriminator = Discriminator( | |
class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device | |
).to(device) | |
x = [] | |
y = [] | |
with open("datasets/toxic/toxic_train.txt") as f: | |
for i, line in enumerate(tqdm(f, ascii=True)): | |
try: | |
d = eval(line) | |
seq = discriminator.tokenizer.encode(d["text"]) | |
if len(seq) < max_length_seq: | |
seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) | |
else: | |
print("Line {} is longer than maximum length {}".format(i, max_length_seq)) | |
continue | |
x.append(seq) | |
y.append(int(np.sum(d["label"]) > 0)) | |
except Exception: | |
print("Error evaluating / tokenizing" " line {}, skipping it".format(i)) | |
pass | |
full_dataset = Dataset(x, y) | |
train_size = int(0.9 * len(full_dataset)) | |
test_size = len(full_dataset) - train_size | |
train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size]) | |
discriminator_meta = { | |
"class_size": len(idx2class), | |
"embed_size": discriminator.embed_size, | |
"pretrained_model": pretrained_model, | |
"class_vocab": class2idx, | |
"default_class": 0, | |
} | |
else: # if dataset == "generic": | |
# This assumes the input dataset is a TSV with the following structure: | |
# class \t text | |
if dataset_fp is None: | |
raise ValueError("When generic dataset is selected, " "dataset_fp needs to be specified aswell.") | |
classes = set() | |
with open(dataset_fp) as f: | |
csv_reader = csv.reader(f, delimiter="\t") | |
for row in tqdm(csv_reader, ascii=True): | |
if row: | |
classes.add(row[0]) | |
idx2class = sorted(classes) | |
class2idx = {c: i for i, c in enumerate(idx2class)} | |
discriminator = Discriminator( | |
class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device | |
).to(device) | |
x = [] | |
y = [] | |
with open(dataset_fp) as f: | |
csv_reader = csv.reader(f, delimiter="\t") | |
for i, row in enumerate(tqdm(csv_reader, ascii=True)): | |
if row: | |
label = row[0] | |
text = row[1] | |
try: | |
seq = discriminator.tokenizer.encode(text) | |
if len(seq) < max_length_seq: | |
seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) | |
else: | |
print("Line {} is longer than maximum length {}".format(i, max_length_seq)) | |
continue | |
x.append(seq) | |
y.append(class2idx[label]) | |
except Exception: | |
print("Error tokenizing line {}, skipping it".format(i)) | |
pass | |
full_dataset = Dataset(x, y) | |
train_size = int(0.9 * len(full_dataset)) | |
test_size = len(full_dataset) - train_size | |
train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size]) | |
discriminator_meta = { | |
"class_size": len(idx2class), | |
"embed_size": discriminator.embed_size, | |
"pretrained_model": pretrained_model, | |
"class_vocab": class2idx, | |
"default_class": 0, | |
} | |
end = time.time() | |
print("Preprocessed {} data points".format(len(train_dataset) + len(test_dataset))) | |
print("Data preprocessing took: {:.3f}s".format(end - start)) | |
if cached: | |
print("Building representation cache...") | |
start = time.time() | |
train_loader = get_cached_data_loader(train_dataset, batch_size, discriminator, shuffle=True, device=device) | |
test_loader = get_cached_data_loader(test_dataset, batch_size, discriminator, device=device) | |
end = time.time() | |
print("Building representation cache took: {:.3f}s".format(end - start)) | |
else: | |
train_loader = torch.utils.data.DataLoader( | |
dataset=train_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn | |
) | |
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, collate_fn=collate_fn) | |
if save_model: | |
with open("{}_classifier_head_meta.json".format(dataset), "w") as meta_file: | |
json.dump(discriminator_meta, meta_file) | |
optimizer = optim.Adam(discriminator.parameters(), lr=0.0001) | |
for epoch in range(epochs): | |
start = time.time() | |
print("\nEpoch", epoch + 1) | |
train_epoch( | |
discriminator=discriminator, | |
data_loader=train_loader, | |
optimizer=optimizer, | |
epoch=epoch, | |
log_interval=log_interval, | |
device=device, | |
) | |
evaluate_performance(data_loader=test_loader, discriminator=discriminator, device=device) | |
end = time.time() | |
print("Epoch took: {:.3f}s".format(end - start)) | |
print("\nExample prediction") | |
predict(example_sentence, discriminator, idx2class, cached=cached, device=device) | |
if save_model: | |
# torch.save(discriminator.state_dict(), | |
# "{}_discriminator_{}.pt".format( | |
# args.dataset, epoch + 1 | |
# )) | |
torch.save( | |
discriminator.get_classifier().state_dict(), | |
"{}_classifier_head_epoch_{}.pt".format(dataset, epoch + 1), | |
) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Train a discriminator on top of GPT-2 representations") | |
parser.add_argument( | |
"--dataset", | |
type=str, | |
default="SST", | |
choices=("SST", "clickbait", "toxic", "generic"), | |
help="dataset to train the discriminator on." | |
"In case of generic, the dataset is expected" | |
"to be a TSBV file with structure: class \\t text", | |
) | |
parser.add_argument( | |
"--dataset_fp", | |
type=str, | |
default="", | |
help="File path of the dataset to use. " "Needed only in case of generic datadset", | |
) | |
parser.add_argument( | |
"--pretrained_model", type=str, default="gpt2-medium", help="Pretrained model to use as encoder" | |
) | |
parser.add_argument("--epochs", type=int, default=10, metavar="N", help="Number of training epochs") | |
parser.add_argument( | |
"--batch_size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)" | |
) | |
parser.add_argument( | |
"--log_interval", | |
type=int, | |
default=10, | |
metavar="N", | |
help="how many batches to wait before logging training status", | |
) | |
parser.add_argument("--save_model", action="store_true", help="whether to save the model") | |
parser.add_argument("--cached", action="store_true", help="whether to cache the input representations") | |
parser.add_argument("--no_cuda", action="store_true", help="use to turn off cuda") | |
args = parser.parse_args() | |
train_discriminator(**(vars(args))) | |