Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" GLUE processors and helpers """ | |
import logging | |
import os | |
from transformers.file_utils import is_tf_available | |
from utils_hans import DataProcessor, InputExample, InputFeatures | |
if is_tf_available(): | |
import tensorflow as tf | |
logger = logging.getLogger(__name__) | |
def hans_convert_examples_to_features( | |
examples, | |
tokenizer, | |
max_length=512, | |
task=None, | |
label_list=None, | |
output_mode=None, | |
pad_on_left=False, | |
pad_token=0, | |
pad_token_segment_id=0, | |
mask_padding_with_zero=True, | |
): | |
""" | |
Loads a data file into a list of ``InputFeatures`` | |
Args: | |
examples: List of ``InputExamples`` or ``tf.data.Dataset`` containing the examples. | |
tokenizer: Instance of a tokenizer that will tokenize the examples | |
max_length: Maximum example length | |
task: HANS | |
label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method | |
output_mode: String indicating the output mode. Either ``regression`` or ``classification`` | |
pad_on_left: If set to ``True``, the examples will be padded on the left rather than on the right (default) | |
pad_token: Padding token | |
pad_token_segment_id: The segment ID for the padding token (It is usually 0, but can vary such as for XLNet where it is 4) | |
mask_padding_with_zero: If set to ``True``, the attention mask will be filled by ``1`` for actual values | |
and by ``0`` for padded values. If set to ``False``, inverts it (``1`` for padded values, ``0`` for | |
actual values) | |
Returns: | |
If the ``examples`` input is a ``tf.data.Dataset``, will return a ``tf.data.Dataset`` | |
containing the task-specific features. If the input is a list of ``InputExamples``, will return | |
a list of task-specific ``InputFeatures`` which can be fed to the model. | |
""" | |
is_tf_dataset = False | |
if is_tf_available() and isinstance(examples, tf.data.Dataset): | |
is_tf_dataset = True | |
if task is not None: | |
processor = glue_processors[task]() | |
if label_list is None: | |
label_list = processor.get_labels() | |
logger.info("Using label list %s for task %s" % (label_list, task)) | |
if output_mode is None: | |
output_mode = glue_output_modes[task] | |
logger.info("Using output mode %s for task %s" % (output_mode, task)) | |
label_map = {label: i for i, label in enumerate(label_list)} | |
features = [] | |
for (ex_index, example) in enumerate(examples): | |
if ex_index % 10000 == 0: | |
logger.info("Writing example %d" % (ex_index)) | |
if is_tf_dataset: | |
example = processor.get_example_from_tensor_dict(example) | |
example = processor.tfds_map(example) | |
inputs = tokenizer.encode_plus(example.text_a, example.text_b, add_special_tokens=True, max_length=max_length,) | |
input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"] | |
# The mask has 1 for real tokens and 0 for padding tokens. Only real | |
# tokens are attended to. | |
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) | |
# Zero-pad up to the sequence length. | |
padding_length = max_length - len(input_ids) | |
if pad_on_left: | |
input_ids = ([pad_token] * padding_length) + input_ids | |
attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask | |
token_type_ids = ([pad_token_segment_id] * padding_length) + token_type_ids | |
else: | |
input_ids = input_ids + ([pad_token] * padding_length) | |
attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) | |
token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) | |
assert len(input_ids) == max_length, "Error with input length {} vs {}".format(len(input_ids), max_length) | |
assert len(attention_mask) == max_length, "Error with input length {} vs {}".format( | |
len(attention_mask), max_length | |
) | |
assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format( | |
len(token_type_ids), max_length | |
) | |
if output_mode == "classification": | |
label = label_map[example.label] if example.label in label_map else 0 | |
elif output_mode == "regression": | |
label = float(example.label) | |
else: | |
raise KeyError(output_mode) | |
pairID = str(example.pairID) | |
if ex_index < 10: | |
logger.info("*** Example ***") | |
logger.info("text_a: %s" % (example.text_a)) | |
logger.info("text_b: %s" % (example.text_b)) | |
logger.info("guid: %s" % (example.guid)) | |
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) | |
logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask])) | |
logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids])) | |
logger.info("label: %s (id = %d)" % (example.label, label)) | |
features.append( | |
InputFeatures( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
label=label, | |
pairID=pairID, | |
) | |
) | |
if is_tf_available() and is_tf_dataset: | |
def gen(): | |
for ex in features: | |
yield ( | |
{ | |
"input_ids": ex.input_ids, | |
"attention_mask": ex.attention_mask, | |
"token_type_ids": ex.token_type_ids, | |
}, | |
ex.label, | |
) | |
return tf.data.Dataset.from_generator( | |
gen, | |
({"input_ids": tf.int32, "attention_mask": tf.int32, "token_type_ids": tf.int32}, tf.int64), | |
( | |
{ | |
"input_ids": tf.TensorShape([None]), | |
"attention_mask": tf.TensorShape([None]), | |
"token_type_ids": tf.TensorShape([None]), | |
}, | |
tf.TensorShape([]), | |
), | |
) | |
return features | |
class HansProcessor(DataProcessor): | |
"""Processor for the HANS data set.""" | |
def get_example_from_tensor_dict(self, tensor_dict): | |
"""See base class.""" | |
return InputExample( | |
tensor_dict["idx"].numpy(), | |
tensor_dict["premise"].numpy().decode("utf-8"), | |
tensor_dict["hypothesis"].numpy().decode("utf-8"), | |
str(tensor_dict["label"].numpy()), | |
) | |
def get_train_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples(self._read_tsv(os.path.join(data_dir, "heuristics_train_set.txt")), "train") | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples(self._read_tsv(os.path.join(data_dir, "heuristics_evaluation_set.txt")), "dev") | |
def get_labels(self): | |
"""See base class.""" | |
return ["contradiction", "entailment", "neutral"] | |
def _create_examples(self, lines, set_type): | |
"""Creates examples for the training and dev sets.""" | |
examples = [] | |
for (i, line) in enumerate(lines): | |
if i == 0: | |
continue | |
guid = "%s-%s" % (set_type, line[0]) | |
text_a = line[5] | |
text_b = line[6] | |
pairID = line[7][2:] if line[7].startswith("ex") else line[7] | |
label = line[-1] | |
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label, pairID=pairID)) | |
return examples | |
glue_tasks_num_labels = { | |
"hans": 3, | |
} | |
glue_processors = { | |
"hans": HansProcessor, | |
} | |
glue_output_modes = { | |
"hans": "classification", | |
} | |