Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import tempfile | |
import unittest | |
from transformers import is_torch_available | |
from .utils import require_torch | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
AdamW, | |
get_constant_schedule, | |
get_constant_schedule_with_warmup, | |
get_cosine_schedule_with_warmup, | |
get_cosine_with_hard_restarts_schedule_with_warmup, | |
get_linear_schedule_with_warmup, | |
) | |
def unwrap_schedule(scheduler, num_steps=10): | |
lrs = [] | |
for _ in range(num_steps): | |
scheduler.step() | |
lrs.append(scheduler.get_lr()) | |
return lrs | |
def unwrap_and_save_reload_schedule(scheduler, num_steps=10): | |
lrs = [] | |
for step in range(num_steps): | |
scheduler.step() | |
lrs.append(scheduler.get_lr()) | |
if step == num_steps // 2: | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
file_name = os.path.join(tmpdirname, "schedule.bin") | |
torch.save(scheduler.state_dict(), file_name) | |
state_dict = torch.load(file_name) | |
scheduler.load_state_dict(state_dict) | |
return lrs | |
class OptimizationTest(unittest.TestCase): | |
def assertListAlmostEqual(self, list1, list2, tol): | |
self.assertEqual(len(list1), len(list2)) | |
for a, b in zip(list1, list2): | |
self.assertAlmostEqual(a, b, delta=tol) | |
def test_adam_w(self): | |
w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True) | |
target = torch.tensor([0.4, 0.2, -0.5]) | |
criterion = torch.nn.MSELoss() | |
# No warmup, constant schedule, no gradient clipping | |
optimizer = AdamW(params=[w], lr=2e-1, weight_decay=0.0) | |
for _ in range(100): | |
loss = criterion(w, target) | |
loss.backward() | |
optimizer.step() | |
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. | |
w.grad.zero_() | |
self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2) | |
class ScheduleInitTest(unittest.TestCase): | |
m = torch.nn.Linear(50, 50) if is_torch_available() else None | |
optimizer = AdamW(m.parameters(), lr=10.0) if is_torch_available() else None | |
num_steps = 10 | |
def assertListAlmostEqual(self, list1, list2, tol): | |
self.assertEqual(len(list1), len(list2)) | |
for a, b in zip(list1, list2): | |
self.assertAlmostEqual(a, b, delta=tol) | |
def test_constant_scheduler(self): | |
scheduler = get_constant_schedule(self.optimizer) | |
lrs = unwrap_schedule(scheduler, self.num_steps) | |
expected_learning_rates = [10.0] * self.num_steps | |
self.assertEqual(len(lrs[0]), 1) | |
self.assertListEqual([l[0] for l in lrs], expected_learning_rates) | |
scheduler = get_constant_schedule(self.optimizer) | |
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps) | |
self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2]) | |
def test_warmup_constant_scheduler(self): | |
scheduler = get_constant_schedule_with_warmup(self.optimizer, num_warmup_steps=4) | |
lrs = unwrap_schedule(scheduler, self.num_steps) | |
expected_learning_rates = [2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0] | |
self.assertEqual(len(lrs[0]), 1) | |
self.assertListEqual([l[0] for l in lrs], expected_learning_rates) | |
scheduler = get_constant_schedule_with_warmup(self.optimizer, num_warmup_steps=4) | |
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps) | |
self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2]) | |
def test_warmup_linear_scheduler(self): | |
scheduler = get_linear_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10) | |
lrs = unwrap_schedule(scheduler, self.num_steps) | |
expected_learning_rates = [5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25, 0.0] | |
self.assertEqual(len(lrs[0]), 1) | |
self.assertListEqual([l[0] for l in lrs], expected_learning_rates) | |
scheduler = get_linear_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10) | |
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps) | |
self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2]) | |
def test_warmup_cosine_scheduler(self): | |
scheduler = get_cosine_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10) | |
lrs = unwrap_schedule(scheduler, self.num_steps) | |
expected_learning_rates = [5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38, 0.0] | |
self.assertEqual(len(lrs[0]), 1) | |
self.assertListAlmostEqual([l[0] for l in lrs], expected_learning_rates, tol=1e-2) | |
scheduler = get_cosine_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10) | |
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps) | |
self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2]) | |
def test_warmup_cosine_hard_restart_scheduler(self): | |
scheduler = get_cosine_with_hard_restarts_schedule_with_warmup( | |
self.optimizer, num_warmup_steps=2, num_cycles=2, num_training_steps=10 | |
) | |
lrs = unwrap_schedule(scheduler, self.num_steps) | |
expected_learning_rates = [5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46, 0.0] | |
self.assertEqual(len(lrs[0]), 1) | |
self.assertListAlmostEqual([l[0] for l in lrs], expected_learning_rates, tol=1e-2) | |
scheduler = get_cosine_with_hard_restarts_schedule_with_warmup( | |
self.optimizer, num_warmup_steps=2, num_cycles=2, num_training_steps=10 | |
) | |
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps) | |
self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2]) | |