Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import csv | |
import json | |
class InputExample(object): | |
""" | |
A single training/test example for simple sequence classification. | |
Args: | |
guid: Unique id for the example. | |
text_a: string. The untokenized text of the first sequence. For single | |
sequence tasks, only this sequence must be specified. | |
text_b: (Optional) string. The untokenized text of the second sequence. | |
Only must be specified for sequence pair tasks. | |
label: (Optional) string. The label of the example. This should be | |
specified for train and dev examples, but not for test examples. | |
""" | |
def __init__(self, guid, text_a, text_b=None, label=None, pairID=None): | |
self.guid = guid | |
self.text_a = text_a | |
self.text_b = text_b | |
self.label = label | |
self.pairID = pairID | |
def __repr__(self): | |
return str(self.to_json_string()) | |
def to_dict(self): | |
"""Serializes this instance to a Python dictionary.""" | |
output = copy.deepcopy(self.__dict__) | |
return output | |
def to_json_string(self): | |
"""Serializes this instance to a JSON string.""" | |
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" | |
class InputFeatures(object): | |
""" | |
A single set of features of data. | |
Args: | |
input_ids: Indices of input sequence tokens in the vocabulary. | |
attention_mask: Mask to avoid performing attention on padding token indices. | |
Mask values selected in ``[0, 1]``: | |
Usually ``1`` for tokens that are NOT MASKED, ``0`` for MASKED (padded) tokens. | |
token_type_ids: Segment token indices to indicate first and second portions of the inputs. | |
label: Label corresponding to the input | |
""" | |
def __init__(self, input_ids, attention_mask, token_type_ids, label, pairID=None): | |
self.input_ids = input_ids | |
self.attention_mask = attention_mask | |
self.token_type_ids = token_type_ids | |
self.label = label | |
self.pairID = pairID | |
def __repr__(self): | |
return str(self.to_json_string()) | |
def to_dict(self): | |
"""Serializes this instance to a Python dictionary.""" | |
output = copy.deepcopy(self.__dict__) | |
return output | |
def to_json_string(self): | |
"""Serializes this instance to a JSON string.""" | |
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" | |
class DataProcessor(object): | |
"""Base class for data converters for sequence classification data sets.""" | |
def get_example_from_tensor_dict(self, tensor_dict): | |
"""Gets an example from a dict with tensorflow tensors | |
Args: | |
tensor_dict: Keys and values should match the corresponding Glue | |
tensorflow_dataset examples. | |
""" | |
raise NotImplementedError() | |
def get_train_examples(self, data_dir): | |
"""Gets a collection of `InputExample`s for the train set.""" | |
raise NotImplementedError() | |
def get_dev_examples(self, data_dir): | |
"""Gets a collection of `InputExample`s for the dev set.""" | |
raise NotImplementedError() | |
def get_labels(self): | |
"""Gets the list of labels for this data set.""" | |
raise NotImplementedError() | |
def _read_tsv(cls, input_file, quotechar=None): | |
"""Reads a tab separated value file.""" | |
with open(input_file, "r", encoding="utf-8-sig") as f: | |
reader = csv.reader(f, delimiter="\t", quotechar=quotechar) | |
lines = [] | |
for line in reader: | |
lines.append(line) | |
return lines | |