Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 3,022 Bytes
63858e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
# coding=utf-8
# Copyright 2019 Hugging Face inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from transformers.tokenization_albert import AlbertTokenizer
from .test_tokenization_common import TokenizerTesterMixin
SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/spiece.model")
class AlbertTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = AlbertTokenizer
def setUp(self):
super().setUp()
# We have a SentencePiece fixture for testing
tokenizer = AlbertTokenizer(SAMPLE_VOCAB)
tokenizer.save_pretrained(self.tmpdirname)
def get_tokenizer(self, **kwargs):
return AlbertTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self):
input_text = "this is a test"
output_text = "this is a test"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = AlbertTokenizer(SAMPLE_VOCAB, keep_accents=True)
tokens = tokenizer.tokenize("This is a test")
self.assertListEqual(tokens, ["▁this", "▁is", "▁a", "▁test"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [48, 25, 21, 1289])
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
self.assertListEqual(
tokens, ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."]
)
ids = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(ids, [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9])
back_tokens = tokenizer.convert_ids_to_tokens(ids)
self.assertListEqual(
back_tokens,
["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."],
)
def test_sequence_builders(self):
tokenizer = AlbertTokenizer(SAMPLE_VOCAB)
text = tokenizer.encode("sequence builders")
text_2 = tokenizer.encode("multi-sequence build")
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_2 + [
tokenizer.sep_token_id
]
|