Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 15,634 Bytes
63858e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
import random
import tempfile
from transformers import is_tf_available, is_torch_available
from .utils import require_tf
if is_tf_available():
import tensorflow as tf
import numpy as np
# from transformers.modeling_bert import BertModel, BertConfig, BERT_PRETRAINED_MODEL_ARCHIVE_MAP
def _config_zero_init(config):
configs_no_init = copy.deepcopy(config)
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key:
setattr(configs_no_init, key, 0.0)
return configs_no_init
@require_tf
class TFModelTesterMixin:
model_tester = None
all_model_classes = ()
test_torchscript = True
test_pruning = True
test_resize_embeddings = True
is_encoder_decoder = False
def test_initialization(self):
pass
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# configs_no_init = _config_zero_init(config)
# for model_class in self.all_model_classes:
# model = model_class(config=configs_no_init)
# for name, param in model.named_parameters():
# if param.requires_grad:
# self.assertIn(param.data.mean().item(), [0.0, 1.0],
# msg="Parameter {} of model {} seems not properly initialized".format(name, model_class))
def test_save_load(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
outputs = model(inputs_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname)
after_outputs = model(inputs_dict)
# Make sure we don't have nans
out_1 = after_outputs[0].numpy()
out_2 = outputs[0].numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def test_pt_tf_model_equivalence(self):
if not is_torch_available():
return
import torch
import transformers
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beggining
pt_model_class = getattr(transformers, pt_model_class_name)
config.output_hidden_states = True
tf_model = model_class(config)
pt_model = pt_model_class(config)
# Check we can load pt model in tf and vice-versa with model => model functions
tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=inputs_dict)
pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
# Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
pt_model.eval()
pt_inputs_dict = dict(
(name, torch.from_numpy(key.numpy()).to(torch.long)) for name, key in inputs_dict.items()
)
with torch.no_grad():
pto = pt_model(**pt_inputs_dict)
tfo = tf_model(inputs_dict, training=False)
tf_hidden_states = tfo[0].numpy()
pt_hidden_states = pto[0].numpy()
tf_hidden_states[np.isnan(tf_hidden_states)] = 0
pt_hidden_states[np.isnan(pt_hidden_states)] = 0
max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
# Debug info (remove when fixed)
if max_diff >= 2e-2:
print("===")
print(model_class)
print(config)
print(inputs_dict)
print(pt_inputs_dict)
self.assertLessEqual(max_diff, 2e-2)
# Check we can load pt model in tf and vice-versa with checkpoint => model functions
with tempfile.TemporaryDirectory() as tmpdirname:
pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
torch.save(pt_model.state_dict(), pt_checkpoint_path)
tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)
tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
tf_model.save_weights(tf_checkpoint_path)
pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)
# Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
pt_model.eval()
pt_inputs_dict = dict(
(name, torch.from_numpy(key.numpy()).to(torch.long)) for name, key in inputs_dict.items()
)
with torch.no_grad():
pto = pt_model(**pt_inputs_dict)
tfo = tf_model(inputs_dict)
tfo = tfo[0].numpy()
pto = pto[0].numpy()
tfo[np.isnan(tfo)] = 0
pto[np.isnan(pto)] = 0
max_diff = np.amax(np.abs(tfo - pto))
self.assertLessEqual(max_diff, 2e-2)
def test_compile_tf_model(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if self.is_encoder_decoder:
input_ids = {
"decoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="decoder_input_ids", dtype="int32"),
"encoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="encoder_input_ids", dtype="int32"),
}
else:
input_ids = tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32")
optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")
for model_class in self.all_model_classes:
# Prepare our model
model = model_class(config)
# Let's load it from the disk to be sure we can use pretrained weights
with tempfile.TemporaryDirectory() as tmpdirname:
outputs = model(inputs_dict) # build the model
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname)
outputs_dict = model(input_ids)
hidden_states = outputs_dict[0]
# Add a dense layer on top to test intetgration with other keras modules
outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)
# Compile extended model
extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])
def test_keyword_and_dict_args(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
outputs_dict = model(inputs_dict)
inputs_keywords = copy.deepcopy(inputs_dict)
input_ids = inputs_keywords.pop("input_ids" if not self.is_encoder_decoder else "decoder_input_ids", None)
outputs_keywords = model(input_ids, **inputs_keywords)
output_dict = outputs_dict[0].numpy()
output_keywords = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
decoder_seq_length = (
self.model_tester.decoder_seq_length
if hasattr(self.model_tester, "decoder_seq_length")
else self.model_tester.seq_length
)
encoder_seq_length = (
self.model_tester.encoder_seq_length
if hasattr(self.model_tester, "encoder_seq_length")
else self.model_tester.seq_length
)
decoder_key_length = (
self.model_tester.key_length if hasattr(self.model_tester, "key_length") else decoder_seq_length
)
encoder_key_length = (
self.model_tester.key_length if hasattr(self.model_tester, "key_length") else encoder_seq_length
)
for model_class in self.all_model_classes:
config.output_attentions = True
config.output_hidden_states = False
model = model_class(config)
outputs = model(inputs_dict)
attentions = [t.numpy() for t in outputs[-1]]
self.assertEqual(model.config.output_attentions, True)
self.assertEqual(model.config.output_hidden_states, False)
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
if self.is_encoder_decoder:
self.assertEqual(out_len % 2, 0)
decoder_attentions = outputs[(out_len // 2) - 1]
self.assertEqual(model.config.output_attentions, True)
self.assertEqual(model.config.output_hidden_states, False)
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# Check attention is always last and order is fine
config.output_attentions = True
config.output_hidden_states = True
model = model_class(config)
outputs = model(inputs_dict)
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
self.assertEqual(model.config.output_attentions, True)
self.assertEqual(model.config.output_hidden_states, True)
attentions = [t.numpy() for t in outputs[-1]]
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
def test_hidden_states_output(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
config.output_hidden_states = True
config.output_attentions = False
model = model_class(config)
outputs = model(inputs_dict)
hidden_states = [t.numpy() for t in outputs[-1]]
self.assertEqual(model.config.output_attentions, False)
self.assertEqual(model.config.output_hidden_states, True)
self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
self.assertListEqual(
list(hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size]
)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
x = model.get_output_embeddings()
assert x is None or isinstance(x, tf.keras.layers.Layer)
def test_determinism(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
first, second = model(inputs_dict, training=False)[0], model(inputs_dict, training=False)[0]
out_1 = first.numpy()
out_2 = second.numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def _get_embeds(self, wte, input_ids):
# ^^ In our TF models, the input_embeddings can take slightly different forms,
# so we try a few of them.
# We used to fall back to just synthetically creating a dummy tensor of ones:
try:
x = wte(input_ids, mode="embedding")
except Exception:
try:
x = wte([input_ids], mode="embedding")
except Exception:
try:
x = wte([input_ids, None, None, None], mode="embedding")
except Exception:
if hasattr(self.model_tester, "embedding_size"):
x = tf.ones(input_ids.shape + [self.model_tester.embedding_size], dtype=tf.dtypes.float32)
else:
x = tf.ones(input_ids.shape + [self.model_tester.hidden_size], dtype=tf.dtypes.float32)
return x
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if not self.is_encoder_decoder:
input_ids = inputs_dict["input_ids"]
del inputs_dict["input_ids"]
else:
encoder_input_ids = inputs_dict["encoder_input_ids"]
decoder_input_ids = inputs_dict["decoder_input_ids"]
del inputs_dict["encoder_input_ids"]
del inputs_dict["decoder_input_ids"]
for model_class in self.all_model_classes:
model = model_class(config)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs_dict["inputs_embeds"] = self._get_embeds(wte, input_ids)
else:
inputs_dict["encoder_inputs_embeds"] = self._get_embeds(wte, encoder_input_ids)
inputs_dict["decoder_inputs_embeds"] = self._get_embeds(wte, decoder_input_ids)
model(inputs_dict)
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
"""Creates a random int32 tensor of the shape within the vocab size."""
if rng is None:
rng = random.Random()
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
return output
|