Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 207,562 Bytes
63858e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Comparing TensorFlow (original) and PyTorch model on the SQuAD task\n",
"\n",
"You can use this small notebook to check the loss computation from the TensorFlow model to the PyTorch model. In the following, we compare the total loss computed by the models starting from identical initializations (position prediction linear layers with weights at 1 and bias at 0).\n",
"\n",
"To run this notebook, follow these instructions:\n",
"- make sure that your Python environment has both TensorFlow and PyTorch installed,\n",
"- download the original TensorFlow implementation,\n",
"- download a pre-trained TensorFlow model as indicaded in the TensorFlow implementation readme,\n",
"- run the script `convert_tf_checkpoint_to_pytorch.py` as indicated in the `README` to convert the pre-trained TensorFlow model to PyTorch.\n",
"\n",
"If needed change the relative paths indicated in this notebook (at the beggining of Sections 1 and 2) to point to the relevent models and code."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:33.636911Z",
"start_time": "2018-11-06T10:11:33.623091Z"
}
},
"outputs": [],
"source": [
"import os\n",
"os.chdir('../')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1/ TensorFlow code"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:33.651792Z",
"start_time": "2018-11-06T10:11:33.638984Z"
}
},
"outputs": [],
"source": [
"original_tf_inplem_dir = \"./tensorflow_code/\"\n",
"model_dir = \"../google_models/uncased_L-12_H-768_A-12/\"\n",
"\n",
"vocab_file = model_dir + \"vocab.txt\"\n",
"bert_config_file = model_dir + \"bert_config.json\"\n",
"init_checkpoint = model_dir + \"bert_model.ckpt\"\n",
"\n",
"input_file = \"../data/squad_data/train-v1.1.json\"\n",
"max_seq_length = 384\n",
"outside_pos = max_seq_length + 10\n",
"doc_stride = 128\n",
"max_query_length = 64\n",
"max_answer_length = 30\n",
"output_dir = \"/tmp/squad_base/\"\n",
"learning_rate = 3e-5"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:35.165788Z",
"start_time": "2018-11-06T10:11:33.653401Z"
}
},
"outputs": [],
"source": [
"import importlib.util\n",
"import sys\n",
"\n",
"spec = importlib.util.spec_from_file_location('*', original_tf_inplem_dir + '/modeling.py')\n",
"module = importlib.util.module_from_spec(spec)\n",
"spec.loader.exec_module(module)\n",
"sys.modules['modeling_tensorflow'] = module\n",
"\n",
"spec = importlib.util.spec_from_file_location('*', original_tf_inplem_dir + '/run_bert_squad.py')\n",
"module = importlib.util.module_from_spec(spec)\n",
"spec.loader.exec_module(module)\n",
"sys.modules['run_squad_tensorflow'] = module\n",
"import modeling_tensorflow\n",
"from run_squad_tensorflow import *"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:37.494391Z",
"start_time": "2018-11-06T10:11:35.168615Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:*** Example ***\n",
"INFO:tensorflow:unique_id: 1000000000\n",
"INFO:tensorflow:example_index: 0\n",
"INFO:tensorflow:doc_span_index: 0\n",
"INFO:tensorflow:tokens: [CLS] to whom did the virgin mary allegedly appear in 1858 in lou ##rdes france ? [SEP] architectural ##ly , the school has a catholic character . atop the main building ' s gold dome is a golden statue of the virgin mary . immediately in front of the main building and facing it , is a copper statue of christ with arms up ##rai ##sed with the legend \" ve ##ni ##te ad me om ##nes \" . next to the main building is the basilica of the sacred heart . immediately behind the basilica is the gr ##otto , a marian place of prayer and reflection . it is a replica of the gr ##otto at lou ##rdes , france where the virgin mary reputed ##ly appeared to saint bern ##ade ##tte so ##ub ##iro ##us in 1858 . at the end of the main drive ( and in a direct line that connects through 3 statues and the gold dome ) , is a simple , modern stone statue of mary . [SEP]\n",
"INFO:tensorflow:token_to_orig_map: 17:0 18:0 19:0 20:1 21:2 22:3 23:4 24:5 25:6 26:6 27:7 28:8 29:9 30:10 31:10 32:10 33:11 34:12 35:13 36:14 37:15 38:16 39:17 40:18 41:19 42:20 43:20 44:21 45:22 46:23 47:24 48:25 49:26 50:27 51:28 52:29 53:30 54:30 55:31 56:32 57:33 58:34 59:35 60:36 61:37 62:38 63:39 64:39 65:39 66:40 67:41 68:42 69:43 70:43 71:43 72:43 73:44 74:45 75:46 76:46 77:46 78:46 79:47 80:48 81:49 82:50 83:51 84:52 85:53 86:54 87:55 88:56 89:57 90:58 91:58 92:59 93:60 94:61 95:62 96:63 97:64 98:65 99:65 100:65 101:66 102:67 103:68 104:69 105:70 106:71 107:72 108:72 109:73 110:74 111:75 112:76 113:77 114:78 115:79 116:79 117:80 118:81 119:81 120:81 121:82 122:83 123:84 124:85 125:86 126:87 127:87 128:88 129:89 130:90 131:91 132:91 133:91 134:92 135:92 136:92 137:92 138:93 139:94 140:94 141:95 142:96 143:97 144:98 145:99 146:100 147:101 148:102 149:102 150:103 151:104 152:105 153:106 154:107 155:108 156:109 157:110 158:111 159:112 160:113 161:114 162:115 163:115 164:115 165:116 166:117 167:118 168:118 169:119 170:120 171:121 172:122 173:123 174:123\n",
"INFO:tensorflow:token_is_max_context: 17:True 18:True 19:True 20:True 21:True 22:True 23:True 24:True 25:True 26:True 27:True 28:True 29:True 30:True 31:True 32:True 33:True 34:True 35:True 36:True 37:True 38:True 39:True 40:True 41:True 42:True 43:True 44:True 45:True 46:True 47:True 48:True 49:True 50:True 51:True 52:True 53:True 54:True 55:True 56:True 57:True 58:True 59:True 60:True 61:True 62:True 63:True 64:True 65:True 66:True 67:True 68:True 69:True 70:True 71:True 72:True 73:True 74:True 75:True 76:True 77:True 78:True 79:True 80:True 81:True 82:True 83:True 84:True 85:True 86:True 87:True 88:True 89:True 90:True 91:True 92:True 93:True 94:True 95:True 96:True 97:True 98:True 99:True 100:True 101:True 102:True 103:True 104:True 105:True 106:True 107:True 108:True 109:True 110:True 111:True 112:True 113:True 114:True 115:True 116:True 117:True 118:True 119:True 120:True 121:True 122:True 123:True 124:True 125:True 126:True 127:True 128:True 129:True 130:True 131:True 132:True 133:True 134:True 135:True 136:True 137:True 138:True 139:True 140:True 141:True 142:True 143:True 144:True 145:True 146:True 147:True 148:True 149:True 150:True 151:True 152:True 153:True 154:True 155:True 156:True 157:True 158:True 159:True 160:True 161:True 162:True 163:True 164:True 165:True 166:True 167:True 168:True 169:True 170:True 171:True 172:True 173:True 174:True\n",
"INFO:tensorflow:input_ids: 101 2000 3183 2106 1996 6261 2984 9382 3711 1999 8517 1999 10223 26371 2605 1029 102 6549 2135 1010 1996 2082 2038 1037 3234 2839 1012 10234 1996 2364 2311 1005 1055 2751 8514 2003 1037 3585 6231 1997 1996 6261 2984 1012 3202 1999 2392 1997 1996 2364 2311 1998 5307 2009 1010 2003 1037 6967 6231 1997 4828 2007 2608 2039 14995 6924 2007 1996 5722 1000 2310 3490 2618 4748 2033 18168 5267 1000 1012 2279 2000 1996 2364 2311 2003 1996 13546 1997 1996 6730 2540 1012 3202 2369 1996 13546 2003 1996 24665 23052 1010 1037 14042 2173 1997 7083 1998 9185 1012 2009 2003 1037 15059 1997 1996 24665 23052 2012 10223 26371 1010 2605 2073 1996 6261 2984 22353 2135 2596 2000 3002 16595 9648 4674 2061 12083 9711 2271 1999 8517 1012 2012 1996 2203 1997 1996 2364 3298 1006 1998 1999 1037 3622 2240 2008 8539 2083 1017 11342 1998 1996 2751 8514 1007 1010 2003 1037 3722 1010 2715 2962 6231 1997 2984 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:start_position: 130\n",
"INFO:tensorflow:end_position: 137\n",
"INFO:tensorflow:answer: saint bern ##ade ##tte so ##ub ##iro ##us\n",
"INFO:tensorflow:*** Example ***\n",
"INFO:tensorflow:unique_id: 1000000001\n",
"INFO:tensorflow:example_index: 1\n",
"INFO:tensorflow:doc_span_index: 0\n",
"INFO:tensorflow:tokens: [CLS] what is in front of the notre dame main building ? [SEP] architectural ##ly , the school has a catholic character . atop the main building ' s gold dome is a golden statue of the virgin mary . immediately in front of the main building and facing it , is a copper statue of christ with arms up ##rai ##sed with the legend \" ve ##ni ##te ad me om ##nes \" . next to the main building is the basilica of the sacred heart . immediately behind the basilica is the gr ##otto , a marian place of prayer and reflection . it is a replica of the gr ##otto at lou ##rdes , france where the virgin mary reputed ##ly appeared to saint bern ##ade ##tte so ##ub ##iro ##us in 1858 . at the end of the main drive ( and in a direct line that connects through 3 statues and the gold dome ) , is a simple , modern stone statue of mary . [SEP]\n",
"INFO:tensorflow:token_to_orig_map: 13:0 14:0 15:0 16:1 17:2 18:3 19:4 20:5 21:6 22:6 23:7 24:8 25:9 26:10 27:10 28:10 29:11 30:12 31:13 32:14 33:15 34:16 35:17 36:18 37:19 38:20 39:20 40:21 41:22 42:23 43:24 44:25 45:26 46:27 47:28 48:29 49:30 50:30 51:31 52:32 53:33 54:34 55:35 56:36 57:37 58:38 59:39 60:39 61:39 62:40 63:41 64:42 65:43 66:43 67:43 68:43 69:44 70:45 71:46 72:46 73:46 74:46 75:47 76:48 77:49 78:50 79:51 80:52 81:53 82:54 83:55 84:56 85:57 86:58 87:58 88:59 89:60 90:61 91:62 92:63 93:64 94:65 95:65 96:65 97:66 98:67 99:68 100:69 101:70 102:71 103:72 104:72 105:73 106:74 107:75 108:76 109:77 110:78 111:79 112:79 113:80 114:81 115:81 116:81 117:82 118:83 119:84 120:85 121:86 122:87 123:87 124:88 125:89 126:90 127:91 128:91 129:91 130:92 131:92 132:92 133:92 134:93 135:94 136:94 137:95 138:96 139:97 140:98 141:99 142:100 143:101 144:102 145:102 146:103 147:104 148:105 149:106 150:107 151:108 152:109 153:110 154:111 155:112 156:113 157:114 158:115 159:115 160:115 161:116 162:117 163:118 164:118 165:119 166:120 167:121 168:122 169:123 170:123\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:token_is_max_context: 13:True 14:True 15:True 16:True 17:True 18:True 19:True 20:True 21:True 22:True 23:True 24:True 25:True 26:True 27:True 28:True 29:True 30:True 31:True 32:True 33:True 34:True 35:True 36:True 37:True 38:True 39:True 40:True 41:True 42:True 43:True 44:True 45:True 46:True 47:True 48:True 49:True 50:True 51:True 52:True 53:True 54:True 55:True 56:True 57:True 58:True 59:True 60:True 61:True 62:True 63:True 64:True 65:True 66:True 67:True 68:True 69:True 70:True 71:True 72:True 73:True 74:True 75:True 76:True 77:True 78:True 79:True 80:True 81:True 82:True 83:True 84:True 85:True 86:True 87:True 88:True 89:True 90:True 91:True 92:True 93:True 94:True 95:True 96:True 97:True 98:True 99:True 100:True 101:True 102:True 103:True 104:True 105:True 106:True 107:True 108:True 109:True 110:True 111:True 112:True 113:True 114:True 115:True 116:True 117:True 118:True 119:True 120:True 121:True 122:True 123:True 124:True 125:True 126:True 127:True 128:True 129:True 130:True 131:True 132:True 133:True 134:True 135:True 136:True 137:True 138:True 139:True 140:True 141:True 142:True 143:True 144:True 145:True 146:True 147:True 148:True 149:True 150:True 151:True 152:True 153:True 154:True 155:True 156:True 157:True 158:True 159:True 160:True 161:True 162:True 163:True 164:True 165:True 166:True 167:True 168:True 169:True 170:True\n",
"INFO:tensorflow:input_ids: 101 2054 2003 1999 2392 1997 1996 10289 8214 2364 2311 1029 102 6549 2135 1010 1996 2082 2038 1037 3234 2839 1012 10234 1996 2364 2311 1005 1055 2751 8514 2003 1037 3585 6231 1997 1996 6261 2984 1012 3202 1999 2392 1997 1996 2364 2311 1998 5307 2009 1010 2003 1037 6967 6231 1997 4828 2007 2608 2039 14995 6924 2007 1996 5722 1000 2310 3490 2618 4748 2033 18168 5267 1000 1012 2279 2000 1996 2364 2311 2003 1996 13546 1997 1996 6730 2540 1012 3202 2369 1996 13546 2003 1996 24665 23052 1010 1037 14042 2173 1997 7083 1998 9185 1012 2009 2003 1037 15059 1997 1996 24665 23052 2012 10223 26371 1010 2605 2073 1996 6261 2984 22353 2135 2596 2000 3002 16595 9648 4674 2061 12083 9711 2271 1999 8517 1012 2012 1996 2203 1997 1996 2364 3298 1006 1998 1999 1037 3622 2240 2008 8539 2083 1017 11342 1998 1996 2751 8514 1007 1010 2003 1037 3722 1010 2715 2962 6231 1997 2984 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:start_position: 52\n",
"INFO:tensorflow:end_position: 56\n",
"INFO:tensorflow:answer: a copper statue of christ\n",
"INFO:tensorflow:*** Example ***\n",
"INFO:tensorflow:unique_id: 1000000002\n",
"INFO:tensorflow:example_index: 2\n",
"INFO:tensorflow:doc_span_index: 0\n",
"INFO:tensorflow:tokens: [CLS] the basilica of the sacred heart at notre dame is beside to which structure ? [SEP] architectural ##ly , the school has a catholic character . atop the main building ' s gold dome is a golden statue of the virgin mary . immediately in front of the main building and facing it , is a copper statue of christ with arms up ##rai ##sed with the legend \" ve ##ni ##te ad me om ##nes \" . next to the main building is the basilica of the sacred heart . immediately behind the basilica is the gr ##otto , a marian place of prayer and reflection . it is a replica of the gr ##otto at lou ##rdes , france where the virgin mary reputed ##ly appeared to saint bern ##ade ##tte so ##ub ##iro ##us in 1858 . at the end of the main drive ( and in a direct line that connects through 3 statues and the gold dome ) , is a simple , modern stone statue of mary . [SEP]\n",
"INFO:tensorflow:token_to_orig_map: 17:0 18:0 19:0 20:1 21:2 22:3 23:4 24:5 25:6 26:6 27:7 28:8 29:9 30:10 31:10 32:10 33:11 34:12 35:13 36:14 37:15 38:16 39:17 40:18 41:19 42:20 43:20 44:21 45:22 46:23 47:24 48:25 49:26 50:27 51:28 52:29 53:30 54:30 55:31 56:32 57:33 58:34 59:35 60:36 61:37 62:38 63:39 64:39 65:39 66:40 67:41 68:42 69:43 70:43 71:43 72:43 73:44 74:45 75:46 76:46 77:46 78:46 79:47 80:48 81:49 82:50 83:51 84:52 85:53 86:54 87:55 88:56 89:57 90:58 91:58 92:59 93:60 94:61 95:62 96:63 97:64 98:65 99:65 100:65 101:66 102:67 103:68 104:69 105:70 106:71 107:72 108:72 109:73 110:74 111:75 112:76 113:77 114:78 115:79 116:79 117:80 118:81 119:81 120:81 121:82 122:83 123:84 124:85 125:86 126:87 127:87 128:88 129:89 130:90 131:91 132:91 133:91 134:92 135:92 136:92 137:92 138:93 139:94 140:94 141:95 142:96 143:97 144:98 145:99 146:100 147:101 148:102 149:102 150:103 151:104 152:105 153:106 154:107 155:108 156:109 157:110 158:111 159:112 160:113 161:114 162:115 163:115 164:115 165:116 166:117 167:118 168:118 169:119 170:120 171:121 172:122 173:123 174:123\n",
"INFO:tensorflow:token_is_max_context: 17:True 18:True 19:True 20:True 21:True 22:True 23:True 24:True 25:True 26:True 27:True 28:True 29:True 30:True 31:True 32:True 33:True 34:True 35:True 36:True 37:True 38:True 39:True 40:True 41:True 42:True 43:True 44:True 45:True 46:True 47:True 48:True 49:True 50:True 51:True 52:True 53:True 54:True 55:True 56:True 57:True 58:True 59:True 60:True 61:True 62:True 63:True 64:True 65:True 66:True 67:True 68:True 69:True 70:True 71:True 72:True 73:True 74:True 75:True 76:True 77:True 78:True 79:True 80:True 81:True 82:True 83:True 84:True 85:True 86:True 87:True 88:True 89:True 90:True 91:True 92:True 93:True 94:True 95:True 96:True 97:True 98:True 99:True 100:True 101:True 102:True 103:True 104:True 105:True 106:True 107:True 108:True 109:True 110:True 111:True 112:True 113:True 114:True 115:True 116:True 117:True 118:True 119:True 120:True 121:True 122:True 123:True 124:True 125:True 126:True 127:True 128:True 129:True 130:True 131:True 132:True 133:True 134:True 135:True 136:True 137:True 138:True 139:True 140:True 141:True 142:True 143:True 144:True 145:True 146:True 147:True 148:True 149:True 150:True 151:True 152:True 153:True 154:True 155:True 156:True 157:True 158:True 159:True 160:True 161:True 162:True 163:True 164:True 165:True 166:True 167:True 168:True 169:True 170:True 171:True 172:True 173:True 174:True\n",
"INFO:tensorflow:input_ids: 101 1996 13546 1997 1996 6730 2540 2012 10289 8214 2003 3875 2000 2029 3252 1029 102 6549 2135 1010 1996 2082 2038 1037 3234 2839 1012 10234 1996 2364 2311 1005 1055 2751 8514 2003 1037 3585 6231 1997 1996 6261 2984 1012 3202 1999 2392 1997 1996 2364 2311 1998 5307 2009 1010 2003 1037 6967 6231 1997 4828 2007 2608 2039 14995 6924 2007 1996 5722 1000 2310 3490 2618 4748 2033 18168 5267 1000 1012 2279 2000 1996 2364 2311 2003 1996 13546 1997 1996 6730 2540 1012 3202 2369 1996 13546 2003 1996 24665 23052 1010 1037 14042 2173 1997 7083 1998 9185 1012 2009 2003 1037 15059 1997 1996 24665 23052 2012 10223 26371 1010 2605 2073 1996 6261 2984 22353 2135 2596 2000 3002 16595 9648 4674 2061 12083 9711 2271 1999 8517 1012 2012 1996 2203 1997 1996 2364 3298 1006 1998 1999 1037 3622 2240 2008 8539 2083 1017 11342 1998 1996 2751 8514 1007 1010 2003 1037 3722 1010 2715 2962 6231 1997 2984 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:start_position: 81\n",
"INFO:tensorflow:end_position: 83\n",
"INFO:tensorflow:answer: the main building\n",
"INFO:tensorflow:*** Example ***\n",
"INFO:tensorflow:unique_id: 1000000003\n",
"INFO:tensorflow:example_index: 3\n",
"INFO:tensorflow:doc_span_index: 0\n",
"INFO:tensorflow:tokens: [CLS] what is the gr ##otto at notre dame ? [SEP] architectural ##ly , the school has a catholic character . atop the main building ' s gold dome is a golden statue of the virgin mary . immediately in front of the main building and facing it , is a copper statue of christ with arms up ##rai ##sed with the legend \" ve ##ni ##te ad me om ##nes \" . next to the main building is the basilica of the sacred heart . immediately behind the basilica is the gr ##otto , a marian place of prayer and reflection . it is a replica of the gr ##otto at lou ##rdes , france where the virgin mary reputed ##ly appeared to saint bern ##ade ##tte so ##ub ##iro ##us in 1858 . at the end of the main drive ( and in a direct line that connects through 3 statues and the gold dome ) , is a simple , modern stone statue of mary . [SEP]\n",
"INFO:tensorflow:token_to_orig_map: 11:0 12:0 13:0 14:1 15:2 16:3 17:4 18:5 19:6 20:6 21:7 22:8 23:9 24:10 25:10 26:10 27:11 28:12 29:13 30:14 31:15 32:16 33:17 34:18 35:19 36:20 37:20 38:21 39:22 40:23 41:24 42:25 43:26 44:27 45:28 46:29 47:30 48:30 49:31 50:32 51:33 52:34 53:35 54:36 55:37 56:38 57:39 58:39 59:39 60:40 61:41 62:42 63:43 64:43 65:43 66:43 67:44 68:45 69:46 70:46 71:46 72:46 73:47 74:48 75:49 76:50 77:51 78:52 79:53 80:54 81:55 82:56 83:57 84:58 85:58 86:59 87:60 88:61 89:62 90:63 91:64 92:65 93:65 94:65 95:66 96:67 97:68 98:69 99:70 100:71 101:72 102:72 103:73 104:74 105:75 106:76 107:77 108:78 109:79 110:79 111:80 112:81 113:81 114:81 115:82 116:83 117:84 118:85 119:86 120:87 121:87 122:88 123:89 124:90 125:91 126:91 127:91 128:92 129:92 130:92 131:92 132:93 133:94 134:94 135:95 136:96 137:97 138:98 139:99 140:100 141:101 142:102 143:102 144:103 145:104 146:105 147:106 148:107 149:108 150:109 151:110 152:111 153:112 154:113 155:114 156:115 157:115 158:115 159:116 160:117 161:118 162:118 163:119 164:120 165:121 166:122 167:123 168:123\n",
"INFO:tensorflow:token_is_max_context: 11:True 12:True 13:True 14:True 15:True 16:True 17:True 18:True 19:True 20:True 21:True 22:True 23:True 24:True 25:True 26:True 27:True 28:True 29:True 30:True 31:True 32:True 33:True 34:True 35:True 36:True 37:True 38:True 39:True 40:True 41:True 42:True 43:True 44:True 45:True 46:True 47:True 48:True 49:True 50:True 51:True 52:True 53:True 54:True 55:True 56:True 57:True 58:True 59:True 60:True 61:True 62:True 63:True 64:True 65:True 66:True 67:True 68:True 69:True 70:True 71:True 72:True 73:True 74:True 75:True 76:True 77:True 78:True 79:True 80:True 81:True 82:True 83:True 84:True 85:True 86:True 87:True 88:True 89:True 90:True 91:True 92:True 93:True 94:True 95:True 96:True 97:True 98:True 99:True 100:True 101:True 102:True 103:True 104:True 105:True 106:True 107:True 108:True 109:True 110:True 111:True 112:True 113:True 114:True 115:True 116:True 117:True 118:True 119:True 120:True 121:True 122:True 123:True 124:True 125:True 126:True 127:True 128:True 129:True 130:True 131:True 132:True 133:True 134:True 135:True 136:True 137:True 138:True 139:True 140:True 141:True 142:True 143:True 144:True 145:True 146:True 147:True 148:True 149:True 150:True 151:True 152:True 153:True 154:True 155:True 156:True 157:True 158:True 159:True 160:True 161:True 162:True 163:True 164:True 165:True 166:True 167:True 168:True\n",
"INFO:tensorflow:input_ids: 101 2054 2003 1996 24665 23052 2012 10289 8214 1029 102 6549 2135 1010 1996 2082 2038 1037 3234 2839 1012 10234 1996 2364 2311 1005 1055 2751 8514 2003 1037 3585 6231 1997 1996 6261 2984 1012 3202 1999 2392 1997 1996 2364 2311 1998 5307 2009 1010 2003 1037 6967 6231 1997 4828 2007 2608 2039 14995 6924 2007 1996 5722 1000 2310 3490 2618 4748 2033 18168 5267 1000 1012 2279 2000 1996 2364 2311 2003 1996 13546 1997 1996 6730 2540 1012 3202 2369 1996 13546 2003 1996 24665 23052 1010 1037 14042 2173 1997 7083 1998 9185 1012 2009 2003 1037 15059 1997 1996 24665 23052 2012 10223 26371 1010 2605 2073 1996 6261 2984 22353 2135 2596 2000 3002 16595 9648 4674 2061 12083 9711 2271 1999 8517 1012 2012 1996 2203 1997 1996 2364 3298 1006 1998 1999 1037 3622 2240 2008 8539 2083 1017 11342 1998 1996 2751 8514 1007 1010 2003 1037 3722 1010 2715 2962 6231 1997 2984 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:start_position: 95\n",
"INFO:tensorflow:end_position: 101\n",
"INFO:tensorflow:answer: a marian place of prayer and reflection\n",
"INFO:tensorflow:*** Example ***\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:unique_id: 1000000004\n",
"INFO:tensorflow:example_index: 4\n",
"INFO:tensorflow:doc_span_index: 0\n",
"INFO:tensorflow:tokens: [CLS] what sits on top of the main building at notre dame ? [SEP] architectural ##ly , the school has a catholic character . atop the main building ' s gold dome is a golden statue of the virgin mary . immediately in front of the main building and facing it , is a copper statue of christ with arms up ##rai ##sed with the legend \" ve ##ni ##te ad me om ##nes \" . next to the main building is the basilica of the sacred heart . immediately behind the basilica is the gr ##otto , a marian place of prayer and reflection . it is a replica of the gr ##otto at lou ##rdes , france where the virgin mary reputed ##ly appeared to saint bern ##ade ##tte so ##ub ##iro ##us in 1858 . at the end of the main drive ( and in a direct line that connects through 3 statues and the gold dome ) , is a simple , modern stone statue of mary . [SEP]\n",
"INFO:tensorflow:token_to_orig_map: 14:0 15:0 16:0 17:1 18:2 19:3 20:4 21:5 22:6 23:6 24:7 25:8 26:9 27:10 28:10 29:10 30:11 31:12 32:13 33:14 34:15 35:16 36:17 37:18 38:19 39:20 40:20 41:21 42:22 43:23 44:24 45:25 46:26 47:27 48:28 49:29 50:30 51:30 52:31 53:32 54:33 55:34 56:35 57:36 58:37 59:38 60:39 61:39 62:39 63:40 64:41 65:42 66:43 67:43 68:43 69:43 70:44 71:45 72:46 73:46 74:46 75:46 76:47 77:48 78:49 79:50 80:51 81:52 82:53 83:54 84:55 85:56 86:57 87:58 88:58 89:59 90:60 91:61 92:62 93:63 94:64 95:65 96:65 97:65 98:66 99:67 100:68 101:69 102:70 103:71 104:72 105:72 106:73 107:74 108:75 109:76 110:77 111:78 112:79 113:79 114:80 115:81 116:81 117:81 118:82 119:83 120:84 121:85 122:86 123:87 124:87 125:88 126:89 127:90 128:91 129:91 130:91 131:92 132:92 133:92 134:92 135:93 136:94 137:94 138:95 139:96 140:97 141:98 142:99 143:100 144:101 145:102 146:102 147:103 148:104 149:105 150:106 151:107 152:108 153:109 154:110 155:111 156:112 157:113 158:114 159:115 160:115 161:115 162:116 163:117 164:118 165:118 166:119 167:120 168:121 169:122 170:123 171:123\n",
"INFO:tensorflow:token_is_max_context: 14:True 15:True 16:True 17:True 18:True 19:True 20:True 21:True 22:True 23:True 24:True 25:True 26:True 27:True 28:True 29:True 30:True 31:True 32:True 33:True 34:True 35:True 36:True 37:True 38:True 39:True 40:True 41:True 42:True 43:True 44:True 45:True 46:True 47:True 48:True 49:True 50:True 51:True 52:True 53:True 54:True 55:True 56:True 57:True 58:True 59:True 60:True 61:True 62:True 63:True 64:True 65:True 66:True 67:True 68:True 69:True 70:True 71:True 72:True 73:True 74:True 75:True 76:True 77:True 78:True 79:True 80:True 81:True 82:True 83:True 84:True 85:True 86:True 87:True 88:True 89:True 90:True 91:True 92:True 93:True 94:True 95:True 96:True 97:True 98:True 99:True 100:True 101:True 102:True 103:True 104:True 105:True 106:True 107:True 108:True 109:True 110:True 111:True 112:True 113:True 114:True 115:True 116:True 117:True 118:True 119:True 120:True 121:True 122:True 123:True 124:True 125:True 126:True 127:True 128:True 129:True 130:True 131:True 132:True 133:True 134:True 135:True 136:True 137:True 138:True 139:True 140:True 141:True 142:True 143:True 144:True 145:True 146:True 147:True 148:True 149:True 150:True 151:True 152:True 153:True 154:True 155:True 156:True 157:True 158:True 159:True 160:True 161:True 162:True 163:True 164:True 165:True 166:True 167:True 168:True 169:True 170:True 171:True\n",
"INFO:tensorflow:input_ids: 101 2054 7719 2006 2327 1997 1996 2364 2311 2012 10289 8214 1029 102 6549 2135 1010 1996 2082 2038 1037 3234 2839 1012 10234 1996 2364 2311 1005 1055 2751 8514 2003 1037 3585 6231 1997 1996 6261 2984 1012 3202 1999 2392 1997 1996 2364 2311 1998 5307 2009 1010 2003 1037 6967 6231 1997 4828 2007 2608 2039 14995 6924 2007 1996 5722 1000 2310 3490 2618 4748 2033 18168 5267 1000 1012 2279 2000 1996 2364 2311 2003 1996 13546 1997 1996 6730 2540 1012 3202 2369 1996 13546 2003 1996 24665 23052 1010 1037 14042 2173 1997 7083 1998 9185 1012 2009 2003 1037 15059 1997 1996 24665 23052 2012 10223 26371 1010 2605 2073 1996 6261 2984 22353 2135 2596 2000 3002 16595 9648 4674 2061 12083 9711 2271 1999 8517 1012 2012 1996 2203 1997 1996 2364 3298 1006 1998 1999 1037 3622 2240 2008 8539 2083 1017 11342 1998 1996 2751 8514 1007 1010 2003 1037 3722 1010 2715 2962 6231 1997 2984 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:start_position: 33\n",
"INFO:tensorflow:end_position: 39\n",
"INFO:tensorflow:answer: a golden statue of the virgin mary\n",
"INFO:tensorflow:*** Example ***\n",
"INFO:tensorflow:unique_id: 1000000005\n",
"INFO:tensorflow:example_index: 5\n",
"INFO:tensorflow:doc_span_index: 0\n",
"INFO:tensorflow:tokens: [CLS] when did the scholastic magazine of notre dame begin publishing ? [SEP] as at most other universities , notre dame ' s students run a number of news media outlets . the nine student - run outlets include three newspapers , both a radio and television station , and several magazines and journals . begun as a one - page journal in september 1876 , the scholastic magazine is issued twice monthly and claims to be the oldest continuous collegiate publication in the united states . the other magazine , the jug ##gler , is released twice a year and focuses on student literature and artwork . the dome yearbook is published annually . the newspapers have varying publication interests , with the observer published daily and mainly reporting university and other news , and staffed by students from both notre dame and saint mary ' s college . unlike scholastic and the dome , the observer is an independent publication and does not have a faculty advisor or any editorial oversight from the university . in 1987 , when some students believed that the observer began to show a conservative bias , a liberal newspaper , common sense was published . likewise , in 2003 , when other students believed that the paper showed a liberal bias , the conservative paper irish rover went into production . neither paper is published as often as the observer ; however , all three are distributed to all students . finally , in spring 2008 an undergraduate journal for political science research , beyond politics , made its debut . [SEP]\n",
"INFO:tensorflow:token_to_orig_map: 13:0 14:1 15:2 16:3 17:4 18:4 19:5 20:6 21:6 22:6 23:7 24:8 25:9 26:10 27:11 28:12 29:13 30:14 31:14 32:15 33:16 34:17 35:17 36:17 37:18 38:19 39:20 40:21 41:21 42:22 43:23 44:24 45:25 46:26 47:27 48:27 49:28 50:29 51:30 52:31 53:32 54:32 55:33 56:34 57:35 58:36 59:36 60:36 61:37 62:38 63:39 64:40 65:40 66:41 67:42 68:43 69:44 70:45 71:46 72:47 73:48 74:49 75:50 76:51 77:52 78:53 79:54 80:55 81:56 82:57 83:58 84:59 85:60 86:60 87:61 88:62 89:63 90:63 91:64 92:65 93:65 94:65 95:66 96:67 97:68 98:69 99:70 100:71 101:72 102:73 103:74 104:75 105:76 106:77 107:77 108:78 109:79 110:80 111:81 112:82 113:83 114:83 115:84 116:85 117:86 118:87 119:88 120:89 121:89 122:90 123:91 124:92 125:93 126:94 127:95 128:96 129:97 130:98 131:99 132:100 133:101 134:101 135:102 136:103 137:104 138:105 139:106 140:107 141:108 142:109 143:110 144:111 145:112 146:112 147:112 148:113 149:113 150:114 151:115 152:116 153:117 154:118 155:118 156:119 157:120 158:121 159:122 160:123 161:124 162:125 163:126 164:127 165:128 166:129 167:130 168:131 169:132 170:133 171:134 172:135 173:136 174:137 175:138 176:138 177:139 178:140 179:140 180:141 181:142 182:143 183:144 184:145 185:146 186:147 187:148 188:149 189:150 190:151 191:152 192:153 193:153 194:154 195:155 196:156 197:156 198:157 199:158 200:159 201:160 202:160 203:161 204:161 205:162 206:163 207:163 208:164 209:165 210:166 211:167 212:168 213:169 214:170 215:171 216:172 217:173 218:174 219:174 220:175 221:176 222:177 223:178 224:179 225:180 226:181 227:182 228:182 229:183 230:184 231:185 232:186 233:187 234:188 235:189 236:190 237:191 238:191 239:192 240:192 241:193 242:194 243:195 244:196 245:197 246:198 247:199 248:199 249:200 250:200 251:201 252:202 253:203 254:204 255:205 256:206 257:207 258:208 259:209 260:210 261:210 262:211 263:212 264:212 265:213 266:214 267:215 268:215\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:token_is_max_context: 13:True 14:True 15:True 16:True 17:True 18:True 19:True 20:True 21:True 22:True 23:True 24:True 25:True 26:True 27:True 28:True 29:True 30:True 31:True 32:True 33:True 34:True 35:True 36:True 37:True 38:True 39:True 40:True 41:True 42:True 43:True 44:True 45:True 46:True 47:True 48:True 49:True 50:True 51:True 52:True 53:True 54:True 55:True 56:True 57:True 58:True 59:True 60:True 61:True 62:True 63:True 64:True 65:True 66:True 67:True 68:True 69:True 70:True 71:True 72:True 73:True 74:True 75:True 76:True 77:True 78:True 79:True 80:True 81:True 82:True 83:True 84:True 85:True 86:True 87:True 88:True 89:True 90:True 91:True 92:True 93:True 94:True 95:True 96:True 97:True 98:True 99:True 100:True 101:True 102:True 103:True 104:True 105:True 106:True 107:True 108:True 109:True 110:True 111:True 112:True 113:True 114:True 115:True 116:True 117:True 118:True 119:True 120:True 121:True 122:True 123:True 124:True 125:True 126:True 127:True 128:True 129:True 130:True 131:True 132:True 133:True 134:True 135:True 136:True 137:True 138:True 139:True 140:True 141:True 142:True 143:True 144:True 145:True 146:True 147:True 148:True 149:True 150:True 151:True 152:True 153:True 154:True 155:True 156:True 157:True 158:True 159:True 160:True 161:True 162:True 163:True 164:True 165:True 166:True 167:True 168:True 169:True 170:True 171:True 172:True 173:True 174:True 175:True 176:True 177:True 178:True 179:True 180:True 181:True 182:True 183:True 184:True 185:True 186:True 187:True 188:True 189:True 190:True 191:True 192:True 193:True 194:True 195:True 196:True 197:True 198:True 199:True 200:True 201:True 202:True 203:True 204:True 205:True 206:True 207:True 208:True 209:True 210:True 211:True 212:True 213:True 214:True 215:True 216:True 217:True 218:True 219:True 220:True 221:True 222:True 223:True 224:True 225:True 226:True 227:True 228:True 229:True 230:True 231:True 232:True 233:True 234:True 235:True 236:True 237:True 238:True 239:True 240:True 241:True 242:True 243:True 244:True 245:True 246:True 247:True 248:True 249:True 250:True 251:True 252:True 253:True 254:True 255:True 256:True 257:True 258:True 259:True 260:True 261:True 262:True 263:True 264:True 265:True 266:True 267:True 268:True\n",
"INFO:tensorflow:input_ids: 101 2043 2106 1996 24105 2932 1997 10289 8214 4088 4640 1029 102 2004 2012 2087 2060 5534 1010 10289 8214 1005 1055 2493 2448 1037 2193 1997 2739 2865 11730 1012 1996 3157 3076 1011 2448 11730 2421 2093 6399 1010 2119 1037 2557 1998 2547 2276 1010 1998 2195 7298 1998 9263 1012 5625 2004 1037 2028 1011 3931 3485 1999 2244 7326 1010 1996 24105 2932 2003 3843 3807 7058 1998 4447 2000 2022 1996 4587 7142 9234 4772 1999 1996 2142 2163 1012 1996 2060 2932 1010 1996 26536 17420 1010 2003 2207 3807 1037 2095 1998 7679 2006 3076 3906 1998 8266 1012 1996 8514 24803 2003 2405 6604 1012 1996 6399 2031 9671 4772 5426 1010 2007 1996 9718 2405 3679 1998 3701 7316 2118 1998 2060 2739 1010 1998 21121 2011 2493 2013 2119 10289 8214 1998 3002 2984 1005 1055 2267 1012 4406 24105 1998 1996 8514 1010 1996 9718 2003 2019 2981 4772 1998 2515 2025 2031 1037 4513 8619 2030 2151 8368 15709 2013 1996 2118 1012 1999 3055 1010 2043 2070 2493 3373 2008 1996 9718 2211 2000 2265 1037 4603 13827 1010 1037 4314 3780 1010 2691 3168 2001 2405 1012 10655 1010 1999 2494 1010 2043 2060 2493 3373 2008 1996 3259 3662 1037 4314 13827 1010 1996 4603 3259 3493 13631 2253 2046 2537 1012 4445 3259 2003 2405 2004 2411 2004 1996 9718 1025 2174 1010 2035 2093 2024 5500 2000 2035 2493 1012 2633 1010 1999 3500 2263 2019 8324 3485 2005 2576 2671 2470 1010 3458 4331 1010 2081 2049 2834 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:start_position: 63\n",
"INFO:tensorflow:end_position: 64\n",
"INFO:tensorflow:answer: september 1876\n",
"INFO:tensorflow:*** Example ***\n",
"INFO:tensorflow:unique_id: 1000000006\n",
"INFO:tensorflow:example_index: 6\n",
"INFO:tensorflow:doc_span_index: 0\n",
"INFO:tensorflow:tokens: [CLS] how often is notre dame ' s the jug ##gler published ? [SEP] as at most other universities , notre dame ' s students run a number of news media outlets . the nine student - run outlets include three newspapers , both a radio and television station , and several magazines and journals . begun as a one - page journal in september 1876 , the scholastic magazine is issued twice monthly and claims to be the oldest continuous collegiate publication in the united states . the other magazine , the jug ##gler , is released twice a year and focuses on student literature and artwork . the dome yearbook is published annually . the newspapers have varying publication interests , with the observer published daily and mainly reporting university and other news , and staffed by students from both notre dame and saint mary ' s college . unlike scholastic and the dome , the observer is an independent publication and does not have a faculty advisor or any editorial oversight from the university . in 1987 , when some students believed that the observer began to show a conservative bias , a liberal newspaper , common sense was published . likewise , in 2003 , when other students believed that the paper showed a liberal bias , the conservative paper irish rover went into production . neither paper is published as often as the observer ; however , all three are distributed to all students . finally , in spring 2008 an undergraduate journal for political science research , beyond politics , made its debut . [SEP]\n",
"INFO:tensorflow:token_to_orig_map: 14:0 15:1 16:2 17:3 18:4 19:4 20:5 21:6 22:6 23:6 24:7 25:8 26:9 27:10 28:11 29:12 30:13 31:14 32:14 33:15 34:16 35:17 36:17 37:17 38:18 39:19 40:20 41:21 42:21 43:22 44:23 45:24 46:25 47:26 48:27 49:27 50:28 51:29 52:30 53:31 54:32 55:32 56:33 57:34 58:35 59:36 60:36 61:36 62:37 63:38 64:39 65:40 66:40 67:41 68:42 69:43 70:44 71:45 72:46 73:47 74:48 75:49 76:50 77:51 78:52 79:53 80:54 81:55 82:56 83:57 84:58 85:59 86:60 87:60 88:61 89:62 90:63 91:63 92:64 93:65 94:65 95:65 96:66 97:67 98:68 99:69 100:70 101:71 102:72 103:73 104:74 105:75 106:76 107:77 108:77 109:78 110:79 111:80 112:81 113:82 114:83 115:83 116:84 117:85 118:86 119:87 120:88 121:89 122:89 123:90 124:91 125:92 126:93 127:94 128:95 129:96 130:97 131:98 132:99 133:100 134:101 135:101 136:102 137:103 138:104 139:105 140:106 141:107 142:108 143:109 144:110 145:111 146:112 147:112 148:112 149:113 150:113 151:114 152:115 153:116 154:117 155:118 156:118 157:119 158:120 159:121 160:122 161:123 162:124 163:125 164:126 165:127 166:128 167:129 168:130 169:131 170:132 171:133 172:134 173:135 174:136 175:137 176:138 177:138 178:139 179:140 180:140 181:141 182:142 183:143 184:144 185:145 186:146 187:147 188:148 189:149 190:150 191:151 192:152 193:153 194:153 195:154 196:155 197:156 198:156 199:157 200:158 201:159 202:160 203:160 204:161 205:161 206:162 207:163 208:163 209:164 210:165 211:166 212:167 213:168 214:169 215:170 216:171 217:172 218:173 219:174 220:174 221:175 222:176 223:177 224:178 225:179 226:180 227:181 228:182 229:182 230:183 231:184 232:185 233:186 234:187 235:188 236:189 237:190 238:191 239:191 240:192 241:192 242:193 243:194 244:195 245:196 246:197 247:198 248:199 249:199 250:200 251:200 252:201 253:202 254:203 255:204 256:205 257:206 258:207 259:208 260:209 261:210 262:210 263:211 264:212 265:212 266:213 267:214 268:215 269:215\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:token_is_max_context: 14:True 15:True 16:True 17:True 18:True 19:True 20:True 21:True 22:True 23:True 24:True 25:True 26:True 27:True 28:True 29:True 30:True 31:True 32:True 33:True 34:True 35:True 36:True 37:True 38:True 39:True 40:True 41:True 42:True 43:True 44:True 45:True 46:True 47:True 48:True 49:True 50:True 51:True 52:True 53:True 54:True 55:True 56:True 57:True 58:True 59:True 60:True 61:True 62:True 63:True 64:True 65:True 66:True 67:True 68:True 69:True 70:True 71:True 72:True 73:True 74:True 75:True 76:True 77:True 78:True 79:True 80:True 81:True 82:True 83:True 84:True 85:True 86:True 87:True 88:True 89:True 90:True 91:True 92:True 93:True 94:True 95:True 96:True 97:True 98:True 99:True 100:True 101:True 102:True 103:True 104:True 105:True 106:True 107:True 108:True 109:True 110:True 111:True 112:True 113:True 114:True 115:True 116:True 117:True 118:True 119:True 120:True 121:True 122:True 123:True 124:True 125:True 126:True 127:True 128:True 129:True 130:True 131:True 132:True 133:True 134:True 135:True 136:True 137:True 138:True 139:True 140:True 141:True 142:True 143:True 144:True 145:True 146:True 147:True 148:True 149:True 150:True 151:True 152:True 153:True 154:True 155:True 156:True 157:True 158:True 159:True 160:True 161:True 162:True 163:True 164:True 165:True 166:True 167:True 168:True 169:True 170:True 171:True 172:True 173:True 174:True 175:True 176:True 177:True 178:True 179:True 180:True 181:True 182:True 183:True 184:True 185:True 186:True 187:True 188:True 189:True 190:True 191:True 192:True 193:True 194:True 195:True 196:True 197:True 198:True 199:True 200:True 201:True 202:True 203:True 204:True 205:True 206:True 207:True 208:True 209:True 210:True 211:True 212:True 213:True 214:True 215:True 216:True 217:True 218:True 219:True 220:True 221:True 222:True 223:True 224:True 225:True 226:True 227:True 228:True 229:True 230:True 231:True 232:True 233:True 234:True 235:True 236:True 237:True 238:True 239:True 240:True 241:True 242:True 243:True 244:True 245:True 246:True 247:True 248:True 249:True 250:True 251:True 252:True 253:True 254:True 255:True 256:True 257:True 258:True 259:True 260:True 261:True 262:True 263:True 264:True 265:True 266:True 267:True 268:True 269:True\n",
"INFO:tensorflow:input_ids: 101 2129 2411 2003 10289 8214 1005 1055 1996 26536 17420 2405 1029 102 2004 2012 2087 2060 5534 1010 10289 8214 1005 1055 2493 2448 1037 2193 1997 2739 2865 11730 1012 1996 3157 3076 1011 2448 11730 2421 2093 6399 1010 2119 1037 2557 1998 2547 2276 1010 1998 2195 7298 1998 9263 1012 5625 2004 1037 2028 1011 3931 3485 1999 2244 7326 1010 1996 24105 2932 2003 3843 3807 7058 1998 4447 2000 2022 1996 4587 7142 9234 4772 1999 1996 2142 2163 1012 1996 2060 2932 1010 1996 26536 17420 1010 2003 2207 3807 1037 2095 1998 7679 2006 3076 3906 1998 8266 1012 1996 8514 24803 2003 2405 6604 1012 1996 6399 2031 9671 4772 5426 1010 2007 1996 9718 2405 3679 1998 3701 7316 2118 1998 2060 2739 1010 1998 21121 2011 2493 2013 2119 10289 8214 1998 3002 2984 1005 1055 2267 1012 4406 24105 1998 1996 8514 1010 1996 9718 2003 2019 2981 4772 1998 2515 2025 2031 1037 4513 8619 2030 2151 8368 15709 2013 1996 2118 1012 1999 3055 1010 2043 2070 2493 3373 2008 1996 9718 2211 2000 2265 1037 4603 13827 1010 1037 4314 3780 1010 2691 3168 2001 2405 1012 10655 1010 1999 2494 1010 2043 2060 2493 3373 2008 1996 3259 3662 1037 4314 13827 1010 1996 4603 3259 3493 13631 2253 2046 2537 1012 4445 3259 2003 2405 2004 2411 2004 1996 9718 1025 2174 1010 2035 2093 2024 5500 2000 2035 2493 1012 2633 1010 1999 3500 2263 2019 8324 3485 2005 2576 2671 2470 1010 3458 4331 1010 2081 2049 2834 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:start_position: 98\n",
"INFO:tensorflow:end_position: 98\n",
"INFO:tensorflow:answer: twice\n",
"INFO:tensorflow:*** Example ***\n",
"INFO:tensorflow:unique_id: 1000000007\n",
"INFO:tensorflow:example_index: 7\n",
"INFO:tensorflow:doc_span_index: 0\n",
"INFO:tensorflow:tokens: [CLS] what is the daily student paper at notre dame called ? [SEP] as at most other universities , notre dame ' s students run a number of news media outlets . the nine student - run outlets include three newspapers , both a radio and television station , and several magazines and journals . begun as a one - page journal in september 1876 , the scholastic magazine is issued twice monthly and claims to be the oldest continuous collegiate publication in the united states . the other magazine , the jug ##gler , is released twice a year and focuses on student literature and artwork . the dome yearbook is published annually . the newspapers have varying publication interests , with the observer published daily and mainly reporting university and other news , and staffed by students from both notre dame and saint mary ' s college . unlike scholastic and the dome , the observer is an independent publication and does not have a faculty advisor or any editorial oversight from the university . in 1987 , when some students believed that the observer began to show a conservative bias , a liberal newspaper , common sense was published . likewise , in 2003 , when other students believed that the paper showed a liberal bias , the conservative paper irish rover went into production . neither paper is published as often as the observer ; however , all three are distributed to all students . finally , in spring 2008 an undergraduate journal for political science research , beyond politics , made its debut . [SEP]\n",
"INFO:tensorflow:token_to_orig_map: 13:0 14:1 15:2 16:3 17:4 18:4 19:5 20:6 21:6 22:6 23:7 24:8 25:9 26:10 27:11 28:12 29:13 30:14 31:14 32:15 33:16 34:17 35:17 36:17 37:18 38:19 39:20 40:21 41:21 42:22 43:23 44:24 45:25 46:26 47:27 48:27 49:28 50:29 51:30 52:31 53:32 54:32 55:33 56:34 57:35 58:36 59:36 60:36 61:37 62:38 63:39 64:40 65:40 66:41 67:42 68:43 69:44 70:45 71:46 72:47 73:48 74:49 75:50 76:51 77:52 78:53 79:54 80:55 81:56 82:57 83:58 84:59 85:60 86:60 87:61 88:62 89:63 90:63 91:64 92:65 93:65 94:65 95:66 96:67 97:68 98:69 99:70 100:71 101:72 102:73 103:74 104:75 105:76 106:77 107:77 108:78 109:79 110:80 111:81 112:82 113:83 114:83 115:84 116:85 117:86 118:87 119:88 120:89 121:89 122:90 123:91 124:92 125:93 126:94 127:95 128:96 129:97 130:98 131:99 132:100 133:101 134:101 135:102 136:103 137:104 138:105 139:106 140:107 141:108 142:109 143:110 144:111 145:112 146:112 147:112 148:113 149:113 150:114 151:115 152:116 153:117 154:118 155:118 156:119 157:120 158:121 159:122 160:123 161:124 162:125 163:126 164:127 165:128 166:129 167:130 168:131 169:132 170:133 171:134 172:135 173:136 174:137 175:138 176:138 177:139 178:140 179:140 180:141 181:142 182:143 183:144 184:145 185:146 186:147 187:148 188:149 189:150 190:151 191:152 192:153 193:153 194:154 195:155 196:156 197:156 198:157 199:158 200:159 201:160 202:160 203:161 204:161 205:162 206:163 207:163 208:164 209:165 210:166 211:167 212:168 213:169 214:170 215:171 216:172 217:173 218:174 219:174 220:175 221:176 222:177 223:178 224:179 225:180 226:181 227:182 228:182 229:183 230:184 231:185 232:186 233:187 234:188 235:189 236:190 237:191 238:191 239:192 240:192 241:193 242:194 243:195 244:196 245:197 246:198 247:199 248:199 249:200 250:200 251:201 252:202 253:203 254:204 255:205 256:206 257:207 258:208 259:209 260:210 261:210 262:211 263:212 264:212 265:213 266:214 267:215 268:215\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:token_is_max_context: 13:True 14:True 15:True 16:True 17:True 18:True 19:True 20:True 21:True 22:True 23:True 24:True 25:True 26:True 27:True 28:True 29:True 30:True 31:True 32:True 33:True 34:True 35:True 36:True 37:True 38:True 39:True 40:True 41:True 42:True 43:True 44:True 45:True 46:True 47:True 48:True 49:True 50:True 51:True 52:True 53:True 54:True 55:True 56:True 57:True 58:True 59:True 60:True 61:True 62:True 63:True 64:True 65:True 66:True 67:True 68:True 69:True 70:True 71:True 72:True 73:True 74:True 75:True 76:True 77:True 78:True 79:True 80:True 81:True 82:True 83:True 84:True 85:True 86:True 87:True 88:True 89:True 90:True 91:True 92:True 93:True 94:True 95:True 96:True 97:True 98:True 99:True 100:True 101:True 102:True 103:True 104:True 105:True 106:True 107:True 108:True 109:True 110:True 111:True 112:True 113:True 114:True 115:True 116:True 117:True 118:True 119:True 120:True 121:True 122:True 123:True 124:True 125:True 126:True 127:True 128:True 129:True 130:True 131:True 132:True 133:True 134:True 135:True 136:True 137:True 138:True 139:True 140:True 141:True 142:True 143:True 144:True 145:True 146:True 147:True 148:True 149:True 150:True 151:True 152:True 153:True 154:True 155:True 156:True 157:True 158:True 159:True 160:True 161:True 162:True 163:True 164:True 165:True 166:True 167:True 168:True 169:True 170:True 171:True 172:True 173:True 174:True 175:True 176:True 177:True 178:True 179:True 180:True 181:True 182:True 183:True 184:True 185:True 186:True 187:True 188:True 189:True 190:True 191:True 192:True 193:True 194:True 195:True 196:True 197:True 198:True 199:True 200:True 201:True 202:True 203:True 204:True 205:True 206:True 207:True 208:True 209:True 210:True 211:True 212:True 213:True 214:True 215:True 216:True 217:True 218:True 219:True 220:True 221:True 222:True 223:True 224:True 225:True 226:True 227:True 228:True 229:True 230:True 231:True 232:True 233:True 234:True 235:True 236:True 237:True 238:True 239:True 240:True 241:True 242:True 243:True 244:True 245:True 246:True 247:True 248:True 249:True 250:True 251:True 252:True 253:True 254:True 255:True 256:True 257:True 258:True 259:True 260:True 261:True 262:True 263:True 264:True 265:True 266:True 267:True 268:True\n",
"INFO:tensorflow:input_ids: 101 2054 2003 1996 3679 3076 3259 2012 10289 8214 2170 1029 102 2004 2012 2087 2060 5534 1010 10289 8214 1005 1055 2493 2448 1037 2193 1997 2739 2865 11730 1012 1996 3157 3076 1011 2448 11730 2421 2093 6399 1010 2119 1037 2557 1998 2547 2276 1010 1998 2195 7298 1998 9263 1012 5625 2004 1037 2028 1011 3931 3485 1999 2244 7326 1010 1996 24105 2932 2003 3843 3807 7058 1998 4447 2000 2022 1996 4587 7142 9234 4772 1999 1996 2142 2163 1012 1996 2060 2932 1010 1996 26536 17420 1010 2003 2207 3807 1037 2095 1998 7679 2006 3076 3906 1998 8266 1012 1996 8514 24803 2003 2405 6604 1012 1996 6399 2031 9671 4772 5426 1010 2007 1996 9718 2405 3679 1998 3701 7316 2118 1998 2060 2739 1010 1998 21121 2011 2493 2013 2119 10289 8214 1998 3002 2984 1005 1055 2267 1012 4406 24105 1998 1996 8514 1010 1996 9718 2003 2019 2981 4772 1998 2515 2025 2031 1037 4513 8619 2030 2151 8368 15709 2013 1996 2118 1012 1999 3055 1010 2043 2070 2493 3373 2008 1996 9718 2211 2000 2265 1037 4603 13827 1010 1037 4314 3780 1010 2691 3168 2001 2405 1012 10655 1010 1999 2494 1010 2043 2060 2493 3373 2008 1996 3259 3662 1037 4314 13827 1010 1996 4603 3259 3493 13631 2253 2046 2537 1012 4445 3259 2003 2405 2004 2411 2004 1996 9718 1025 2174 1010 2035 2093 2024 5500 2000 2035 2493 1012 2633 1010 1999 3500 2263 2019 8324 3485 2005 2576 2671 2470 1010 3458 4331 1010 2081 2049 2834 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:start_position: 123\n",
"INFO:tensorflow:end_position: 124\n",
"INFO:tensorflow:answer: the observer\n",
"INFO:tensorflow:*** Example ***\n",
"INFO:tensorflow:unique_id: 1000000008\n",
"INFO:tensorflow:example_index: 8\n",
"INFO:tensorflow:doc_span_index: 0\n",
"INFO:tensorflow:tokens: [CLS] how many student news papers are found at notre dame ? [SEP] as at most other universities , notre dame ' s students run a number of news media outlets . the nine student - run outlets include three newspapers , both a radio and television station , and several magazines and journals . begun as a one - page journal in september 1876 , the scholastic magazine is issued twice monthly and claims to be the oldest continuous collegiate publication in the united states . the other magazine , the jug ##gler , is released twice a year and focuses on student literature and artwork . the dome yearbook is published annually . the newspapers have varying publication interests , with the observer published daily and mainly reporting university and other news , and staffed by students from both notre dame and saint mary ' s college . unlike scholastic and the dome , the observer is an independent publication and does not have a faculty advisor or any editorial oversight from the university . in 1987 , when some students believed that the observer began to show a conservative bias , a liberal newspaper , common sense was published . likewise , in 2003 , when other students believed that the paper showed a liberal bias , the conservative paper irish rover went into production . neither paper is published as often as the observer ; however , all three are distributed to all students . finally , in spring 2008 an undergraduate journal for political science research , beyond politics , made its debut . [SEP]\n",
"INFO:tensorflow:token_to_orig_map: 13:0 14:1 15:2 16:3 17:4 18:4 19:5 20:6 21:6 22:6 23:7 24:8 25:9 26:10 27:11 28:12 29:13 30:14 31:14 32:15 33:16 34:17 35:17 36:17 37:18 38:19 39:20 40:21 41:21 42:22 43:23 44:24 45:25 46:26 47:27 48:27 49:28 50:29 51:30 52:31 53:32 54:32 55:33 56:34 57:35 58:36 59:36 60:36 61:37 62:38 63:39 64:40 65:40 66:41 67:42 68:43 69:44 70:45 71:46 72:47 73:48 74:49 75:50 76:51 77:52 78:53 79:54 80:55 81:56 82:57 83:58 84:59 85:60 86:60 87:61 88:62 89:63 90:63 91:64 92:65 93:65 94:65 95:66 96:67 97:68 98:69 99:70 100:71 101:72 102:73 103:74 104:75 105:76 106:77 107:77 108:78 109:79 110:80 111:81 112:82 113:83 114:83 115:84 116:85 117:86 118:87 119:88 120:89 121:89 122:90 123:91 124:92 125:93 126:94 127:95 128:96 129:97 130:98 131:99 132:100 133:101 134:101 135:102 136:103 137:104 138:105 139:106 140:107 141:108 142:109 143:110 144:111 145:112 146:112 147:112 148:113 149:113 150:114 151:115 152:116 153:117 154:118 155:118 156:119 157:120 158:121 159:122 160:123 161:124 162:125 163:126 164:127 165:128 166:129 167:130 168:131 169:132 170:133 171:134 172:135 173:136 174:137 175:138 176:138 177:139 178:140 179:140 180:141 181:142 182:143 183:144 184:145 185:146 186:147 187:148 188:149 189:150 190:151 191:152 192:153 193:153 194:154 195:155 196:156 197:156 198:157 199:158 200:159 201:160 202:160 203:161 204:161 205:162 206:163 207:163 208:164 209:165 210:166 211:167 212:168 213:169 214:170 215:171 216:172 217:173 218:174 219:174 220:175 221:176 222:177 223:178 224:179 225:180 226:181 227:182 228:182 229:183 230:184 231:185 232:186 233:187 234:188 235:189 236:190 237:191 238:191 239:192 240:192 241:193 242:194 243:195 244:196 245:197 246:198 247:199 248:199 249:200 250:200 251:201 252:202 253:203 254:204 255:205 256:206 257:207 258:208 259:209 260:210 261:210 262:211 263:212 264:212 265:213 266:214 267:215 268:215\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:token_is_max_context: 13:True 14:True 15:True 16:True 17:True 18:True 19:True 20:True 21:True 22:True 23:True 24:True 25:True 26:True 27:True 28:True 29:True 30:True 31:True 32:True 33:True 34:True 35:True 36:True 37:True 38:True 39:True 40:True 41:True 42:True 43:True 44:True 45:True 46:True 47:True 48:True 49:True 50:True 51:True 52:True 53:True 54:True 55:True 56:True 57:True 58:True 59:True 60:True 61:True 62:True 63:True 64:True 65:True 66:True 67:True 68:True 69:True 70:True 71:True 72:True 73:True 74:True 75:True 76:True 77:True 78:True 79:True 80:True 81:True 82:True 83:True 84:True 85:True 86:True 87:True 88:True 89:True 90:True 91:True 92:True 93:True 94:True 95:True 96:True 97:True 98:True 99:True 100:True 101:True 102:True 103:True 104:True 105:True 106:True 107:True 108:True 109:True 110:True 111:True 112:True 113:True 114:True 115:True 116:True 117:True 118:True 119:True 120:True 121:True 122:True 123:True 124:True 125:True 126:True 127:True 128:True 129:True 130:True 131:True 132:True 133:True 134:True 135:True 136:True 137:True 138:True 139:True 140:True 141:True 142:True 143:True 144:True 145:True 146:True 147:True 148:True 149:True 150:True 151:True 152:True 153:True 154:True 155:True 156:True 157:True 158:True 159:True 160:True 161:True 162:True 163:True 164:True 165:True 166:True 167:True 168:True 169:True 170:True 171:True 172:True 173:True 174:True 175:True 176:True 177:True 178:True 179:True 180:True 181:True 182:True 183:True 184:True 185:True 186:True 187:True 188:True 189:True 190:True 191:True 192:True 193:True 194:True 195:True 196:True 197:True 198:True 199:True 200:True 201:True 202:True 203:True 204:True 205:True 206:True 207:True 208:True 209:True 210:True 211:True 212:True 213:True 214:True 215:True 216:True 217:True 218:True 219:True 220:True 221:True 222:True 223:True 224:True 225:True 226:True 227:True 228:True 229:True 230:True 231:True 232:True 233:True 234:True 235:True 236:True 237:True 238:True 239:True 240:True 241:True 242:True 243:True 244:True 245:True 246:True 247:True 248:True 249:True 250:True 251:True 252:True 253:True 254:True 255:True 256:True 257:True 258:True 259:True 260:True 261:True 262:True 263:True 264:True 265:True 266:True 267:True 268:True\n",
"INFO:tensorflow:input_ids: 101 2129 2116 3076 2739 4981 2024 2179 2012 10289 8214 1029 102 2004 2012 2087 2060 5534 1010 10289 8214 1005 1055 2493 2448 1037 2193 1997 2739 2865 11730 1012 1996 3157 3076 1011 2448 11730 2421 2093 6399 1010 2119 1037 2557 1998 2547 2276 1010 1998 2195 7298 1998 9263 1012 5625 2004 1037 2028 1011 3931 3485 1999 2244 7326 1010 1996 24105 2932 2003 3843 3807 7058 1998 4447 2000 2022 1996 4587 7142 9234 4772 1999 1996 2142 2163 1012 1996 2060 2932 1010 1996 26536 17420 1010 2003 2207 3807 1037 2095 1998 7679 2006 3076 3906 1998 8266 1012 1996 8514 24803 2003 2405 6604 1012 1996 6399 2031 9671 4772 5426 1010 2007 1996 9718 2405 3679 1998 3701 7316 2118 1998 2060 2739 1010 1998 21121 2011 2493 2013 2119 10289 8214 1998 3002 2984 1005 1055 2267 1012 4406 24105 1998 1996 8514 1010 1996 9718 2003 2019 2981 4772 1998 2515 2025 2031 1037 4513 8619 2030 2151 8368 15709 2013 1996 2118 1012 1999 3055 1010 2043 2070 2493 3373 2008 1996 9718 2211 2000 2265 1037 4603 13827 1010 1037 4314 3780 1010 2691 3168 2001 2405 1012 10655 1010 1999 2494 1010 2043 2060 2493 3373 2008 1996 3259 3662 1037 4314 13827 1010 1996 4603 3259 3493 13631 2253 2046 2537 1012 4445 3259 2003 2405 2004 2411 2004 1996 9718 1025 2174 1010 2035 2093 2024 5500 2000 2035 2493 1012 2633 1010 1999 3500 2263 2019 8324 3485 2005 2576 2671 2470 1010 3458 4331 1010 2081 2049 2834 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:start_position: 39\n",
"INFO:tensorflow:end_position: 39\n",
"INFO:tensorflow:answer: three\n",
"INFO:tensorflow:*** Example ***\n",
"INFO:tensorflow:unique_id: 1000000009\n",
"INFO:tensorflow:example_index: 9\n",
"INFO:tensorflow:doc_span_index: 0\n",
"INFO:tensorflow:tokens: [CLS] in what year did the student paper common sense begin publication at notre dame ? [SEP] as at most other universities , notre dame ' s students run a number of news media outlets . the nine student - run outlets include three newspapers , both a radio and television station , and several magazines and journals . begun as a one - page journal in september 1876 , the scholastic magazine is issued twice monthly and claims to be the oldest continuous collegiate publication in the united states . the other magazine , the jug ##gler , is released twice a year and focuses on student literature and artwork . the dome yearbook is published annually . the newspapers have varying publication interests , with the observer published daily and mainly reporting university and other news , and staffed by students from both notre dame and saint mary ' s college . unlike scholastic and the dome , the observer is an independent publication and does not have a faculty advisor or any editorial oversight from the university . in 1987 , when some students believed that the observer began to show a conservative bias , a liberal newspaper , common sense was published . likewise , in 2003 , when other students believed that the paper showed a liberal bias , the conservative paper irish rover went into production . neither paper is published as often as the observer ; however , all three are distributed to all students . finally , in spring 2008 an undergraduate journal for political science research , beyond politics , made its debut . [SEP]\n",
"INFO:tensorflow:token_to_orig_map: 17:0 18:1 19:2 20:3 21:4 22:4 23:5 24:6 25:6 26:6 27:7 28:8 29:9 30:10 31:11 32:12 33:13 34:14 35:14 36:15 37:16 38:17 39:17 40:17 41:18 42:19 43:20 44:21 45:21 46:22 47:23 48:24 49:25 50:26 51:27 52:27 53:28 54:29 55:30 56:31 57:32 58:32 59:33 60:34 61:35 62:36 63:36 64:36 65:37 66:38 67:39 68:40 69:40 70:41 71:42 72:43 73:44 74:45 75:46 76:47 77:48 78:49 79:50 80:51 81:52 82:53 83:54 84:55 85:56 86:57 87:58 88:59 89:60 90:60 91:61 92:62 93:63 94:63 95:64 96:65 97:65 98:65 99:66 100:67 101:68 102:69 103:70 104:71 105:72 106:73 107:74 108:75 109:76 110:77 111:77 112:78 113:79 114:80 115:81 116:82 117:83 118:83 119:84 120:85 121:86 122:87 123:88 124:89 125:89 126:90 127:91 128:92 129:93 130:94 131:95 132:96 133:97 134:98 135:99 136:100 137:101 138:101 139:102 140:103 141:104 142:105 143:106 144:107 145:108 146:109 147:110 148:111 149:112 150:112 151:112 152:113 153:113 154:114 155:115 156:116 157:117 158:118 159:118 160:119 161:120 162:121 163:122 164:123 165:124 166:125 167:126 168:127 169:128 170:129 171:130 172:131 173:132 174:133 175:134 176:135 177:136 178:137 179:138 180:138 181:139 182:140 183:140 184:141 185:142 186:143 187:144 188:145 189:146 190:147 191:148 192:149 193:150 194:151 195:152 196:153 197:153 198:154 199:155 200:156 201:156 202:157 203:158 204:159 205:160 206:160 207:161 208:161 209:162 210:163 211:163 212:164 213:165 214:166 215:167 216:168 217:169 218:170 219:171 220:172 221:173 222:174 223:174 224:175 225:176 226:177 227:178 228:179 229:180 230:181 231:182 232:182 233:183 234:184 235:185 236:186 237:187 238:188 239:189 240:190 241:191 242:191 243:192 244:192 245:193 246:194 247:195 248:196 249:197 250:198 251:199 252:199 253:200 254:200 255:201 256:202 257:203 258:204 259:205 260:206 261:207 262:208 263:209 264:210 265:210 266:211 267:212 268:212 269:213 270:214 271:215 272:215\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:token_is_max_context: 17:True 18:True 19:True 20:True 21:True 22:True 23:True 24:True 25:True 26:True 27:True 28:True 29:True 30:True 31:True 32:True 33:True 34:True 35:True 36:True 37:True 38:True 39:True 40:True 41:True 42:True 43:True 44:True 45:True 46:True 47:True 48:True 49:True 50:True 51:True 52:True 53:True 54:True 55:True 56:True 57:True 58:True 59:True 60:True 61:True 62:True 63:True 64:True 65:True 66:True 67:True 68:True 69:True 70:True 71:True 72:True 73:True 74:True 75:True 76:True 77:True 78:True 79:True 80:True 81:True 82:True 83:True 84:True 85:True 86:True 87:True 88:True 89:True 90:True 91:True 92:True 93:True 94:True 95:True 96:True 97:True 98:True 99:True 100:True 101:True 102:True 103:True 104:True 105:True 106:True 107:True 108:True 109:True 110:True 111:True 112:True 113:True 114:True 115:True 116:True 117:True 118:True 119:True 120:True 121:True 122:True 123:True 124:True 125:True 126:True 127:True 128:True 129:True 130:True 131:True 132:True 133:True 134:True 135:True 136:True 137:True 138:True 139:True 140:True 141:True 142:True 143:True 144:True 145:True 146:True 147:True 148:True 149:True 150:True 151:True 152:True 153:True 154:True 155:True 156:True 157:True 158:True 159:True 160:True 161:True 162:True 163:True 164:True 165:True 166:True 167:True 168:True 169:True 170:True 171:True 172:True 173:True 174:True 175:True 176:True 177:True 178:True 179:True 180:True 181:True 182:True 183:True 184:True 185:True 186:True 187:True 188:True 189:True 190:True 191:True 192:True 193:True 194:True 195:True 196:True 197:True 198:True 199:True 200:True 201:True 202:True 203:True 204:True 205:True 206:True 207:True 208:True 209:True 210:True 211:True 212:True 213:True 214:True 215:True 216:True 217:True 218:True 219:True 220:True 221:True 222:True 223:True 224:True 225:True 226:True 227:True 228:True 229:True 230:True 231:True 232:True 233:True 234:True 235:True 236:True 237:True 238:True 239:True 240:True 241:True 242:True 243:True 244:True 245:True 246:True 247:True 248:True 249:True 250:True 251:True 252:True 253:True 254:True 255:True 256:True 257:True 258:True 259:True 260:True 261:True 262:True 263:True 264:True 265:True 266:True 267:True 268:True 269:True 270:True 271:True 272:True\n",
"INFO:tensorflow:input_ids: 101 1999 2054 2095 2106 1996 3076 3259 2691 3168 4088 4772 2012 10289 8214 1029 102 2004 2012 2087 2060 5534 1010 10289 8214 1005 1055 2493 2448 1037 2193 1997 2739 2865 11730 1012 1996 3157 3076 1011 2448 11730 2421 2093 6399 1010 2119 1037 2557 1998 2547 2276 1010 1998 2195 7298 1998 9263 1012 5625 2004 1037 2028 1011 3931 3485 1999 2244 7326 1010 1996 24105 2932 2003 3843 3807 7058 1998 4447 2000 2022 1996 4587 7142 9234 4772 1999 1996 2142 2163 1012 1996 2060 2932 1010 1996 26536 17420 1010 2003 2207 3807 1037 2095 1998 7679 2006 3076 3906 1998 8266 1012 1996 8514 24803 2003 2405 6604 1012 1996 6399 2031 9671 4772 5426 1010 2007 1996 9718 2405 3679 1998 3701 7316 2118 1998 2060 2739 1010 1998 21121 2011 2493 2013 2119 10289 8214 1998 3002 2984 1005 1055 2267 1012 4406 24105 1998 1996 8514 1010 1996 9718 2003 2019 2981 4772 1998 2515 2025 2031 1037 4513 8619 2030 2151 8368 15709 2013 1996 2118 1012 1999 3055 1010 2043 2070 2493 3373 2008 1996 9718 2211 2000 2265 1037 4603 13827 1010 1037 4314 3780 1010 2691 3168 2001 2405 1012 10655 1010 1999 2494 1010 2043 2060 2493 3373 2008 1996 3259 3662 1037 4314 13827 1010 1996 4603 3259 3493 13631 2253 2046 2537 1012 4445 3259 2003 2405 2004 2411 2004 1996 9718 1025 2174 1010 2035 2093 2024 5500 2000 2035 2493 1012 2633 1010 1999 3500 2263 2019 8324 3485 2005 2576 2671 2470 1010 3458 4331 1010 2081 2049 2834 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:start_position: 182\n",
"INFO:tensorflow:end_position: 182\n",
"INFO:tensorflow:answer: 1987\n",
"INFO:tensorflow:*** Example ***\n",
"INFO:tensorflow:unique_id: 1000000010\n",
"INFO:tensorflow:example_index: 10\n",
"INFO:tensorflow:doc_span_index: 0\n",
"INFO:tensorflow:tokens: [CLS] where is the headquarters of the congregation of the holy cross ? [SEP] the university is the major seat of the congregation of holy cross ( albeit not its official headquarters , which are in rome ) . its main seminary , more ##au seminary , is located on the campus across st . joseph lake from the main building . old college , the oldest building on campus and located near the shore of st . mary lake , houses undergraduate seminar ##ians . retired priests and brothers reside in fatima house ( a former retreat center ) , holy cross house , as well as col ##umb ##a hall near the gr ##otto . the university through the more ##au seminary has ties to theologian frederick bu ##ech ##ner . while not catholic , bu ##ech ##ner has praised writers from notre dame and more ##au seminary created a bu ##ech ##ner prize for preaching . [SEP]\n",
"INFO:tensorflow:token_to_orig_map: 14:0 15:1 16:2 17:3 18:4 19:5 20:6 21:7 22:8 23:9 24:10 25:11 26:12 27:12 28:13 29:14 30:15 31:16 32:16 33:17 34:18 35:19 36:20 37:20 38:20 39:21 40:22 41:23 42:23 43:24 44:24 45:25 46:25 47:26 48:27 49:28 50:29 51:30 52:31 53:32 54:32 55:33 56:34 57:35 58:36 59:37 60:38 61:38 62:39 63:40 64:40 65:41 66:42 67:43 68:44 69:45 70:46 71:47 72:48 73:49 74:50 75:51 76:52 77:52 78:53 79:54 80:54 81:55 82:56 83:57 84:57 85:57 86:58 87:59 88:60 89:61 90:62 91:63 92:64 93:65 94:66 95:66 96:67 97:68 98:69 99:69 100:69 101:70 102:71 103:72 104:72 105:73 106:74 107:75 108:76 109:76 110:76 111:77 112:78 113:79 114:80 115:80 116:80 117:81 118:82 119:83 120:84 121:85 122:85 123:86 124:87 125:88 126:89 127:90 128:91 129:92 130:92 131:92 132:92 133:93 134:94 135:95 136:95 137:96 138:96 139:96 140:97 141:98 142:99 143:100 144:101 145:102 146:103 147:104 148:104 149:105 150:106 151:107 152:108 153:108 154:108 155:109 156:110 157:111 158:111\n",
"INFO:tensorflow:token_is_max_context: 14:True 15:True 16:True 17:True 18:True 19:True 20:True 21:True 22:True 23:True 24:True 25:True 26:True 27:True 28:True 29:True 30:True 31:True 32:True 33:True 34:True 35:True 36:True 37:True 38:True 39:True 40:True 41:True 42:True 43:True 44:True 45:True 46:True 47:True 48:True 49:True 50:True 51:True 52:True 53:True 54:True 55:True 56:True 57:True 58:True 59:True 60:True 61:True 62:True 63:True 64:True 65:True 66:True 67:True 68:True 69:True 70:True 71:True 72:True 73:True 74:True 75:True 76:True 77:True 78:True 79:True 80:True 81:True 82:True 83:True 84:True 85:True 86:True 87:True 88:True 89:True 90:True 91:True 92:True 93:True 94:True 95:True 96:True 97:True 98:True 99:True 100:True 101:True 102:True 103:True 104:True 105:True 106:True 107:True 108:True 109:True 110:True 111:True 112:True 113:True 114:True 115:True 116:True 117:True 118:True 119:True 120:True 121:True 122:True 123:True 124:True 125:True 126:True 127:True 128:True 129:True 130:True 131:True 132:True 133:True 134:True 135:True 136:True 137:True 138:True 139:True 140:True 141:True 142:True 143:True 144:True 145:True 146:True 147:True 148:True 149:True 150:True 151:True 152:True 153:True 154:True 155:True 156:True 157:True 158:True\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:input_ids: 101 2073 2003 1996 4075 1997 1996 7769 1997 1996 4151 2892 1029 102 1996 2118 2003 1996 2350 2835 1997 1996 7769 1997 4151 2892 1006 12167 2025 2049 2880 4075 1010 2029 2024 1999 4199 1007 1012 2049 2364 8705 1010 2062 4887 8705 1010 2003 2284 2006 1996 3721 2408 2358 1012 3312 2697 2013 1996 2364 2311 1012 2214 2267 1010 1996 4587 2311 2006 3721 1998 2284 2379 1996 5370 1997 2358 1012 2984 2697 1010 3506 8324 18014 7066 1012 3394 8656 1998 3428 13960 1999 27596 2160 1006 1037 2280 7822 2415 1007 1010 4151 2892 2160 1010 2004 2092 2004 8902 25438 2050 2534 2379 1996 24665 23052 1012 1996 2118 2083 1996 2062 4887 8705 2038 7208 2000 17200 5406 20934 15937 3678 1012 2096 2025 3234 1010 20934 15937 3678 2038 5868 4898 2013 10289 8214 1998 2062 4887 8705 2580 1037 20934 15937 3678 3396 2005 17979 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:start_position: 36\n",
"INFO:tensorflow:end_position: 36\n",
"INFO:tensorflow:answer: rome\n",
"INFO:tensorflow:*** Example ***\n",
"INFO:tensorflow:unique_id: 1000000011\n",
"INFO:tensorflow:example_index: 11\n",
"INFO:tensorflow:doc_span_index: 0\n",
"INFO:tensorflow:tokens: [CLS] what is the primary seminary of the congregation of the holy cross ? [SEP] the university is the major seat of the congregation of holy cross ( albeit not its official headquarters , which are in rome ) . its main seminary , more ##au seminary , is located on the campus across st . joseph lake from the main building . old college , the oldest building on campus and located near the shore of st . mary lake , houses undergraduate seminar ##ians . retired priests and brothers reside in fatima house ( a former retreat center ) , holy cross house , as well as col ##umb ##a hall near the gr ##otto . the university through the more ##au seminary has ties to theologian frederick bu ##ech ##ner . while not catholic , bu ##ech ##ner has praised writers from notre dame and more ##au seminary created a bu ##ech ##ner prize for preaching . [SEP]\n",
"INFO:tensorflow:token_to_orig_map: 15:0 16:1 17:2 18:3 19:4 20:5 21:6 22:7 23:8 24:9 25:10 26:11 27:12 28:12 29:13 30:14 31:15 32:16 33:16 34:17 35:18 36:19 37:20 38:20 39:20 40:21 41:22 42:23 43:23 44:24 45:24 46:25 47:25 48:26 49:27 50:28 51:29 52:30 53:31 54:32 55:32 56:33 57:34 58:35 59:36 60:37 61:38 62:38 63:39 64:40 65:40 66:41 67:42 68:43 69:44 70:45 71:46 72:47 73:48 74:49 75:50 76:51 77:52 78:52 79:53 80:54 81:54 82:55 83:56 84:57 85:57 86:57 87:58 88:59 89:60 90:61 91:62 92:63 93:64 94:65 95:66 96:66 97:67 98:68 99:69 100:69 101:69 102:70 103:71 104:72 105:72 106:73 107:74 108:75 109:76 110:76 111:76 112:77 113:78 114:79 115:80 116:80 117:80 118:81 119:82 120:83 121:84 122:85 123:85 124:86 125:87 126:88 127:89 128:90 129:91 130:92 131:92 132:92 133:92 134:93 135:94 136:95 137:95 138:96 139:96 140:96 141:97 142:98 143:99 144:100 145:101 146:102 147:103 148:104 149:104 150:105 151:106 152:107 153:108 154:108 155:108 156:109 157:110 158:111 159:111\n",
"INFO:tensorflow:token_is_max_context: 15:True 16:True 17:True 18:True 19:True 20:True 21:True 22:True 23:True 24:True 25:True 26:True 27:True 28:True 29:True 30:True 31:True 32:True 33:True 34:True 35:True 36:True 37:True 38:True 39:True 40:True 41:True 42:True 43:True 44:True 45:True 46:True 47:True 48:True 49:True 50:True 51:True 52:True 53:True 54:True 55:True 56:True 57:True 58:True 59:True 60:True 61:True 62:True 63:True 64:True 65:True 66:True 67:True 68:True 69:True 70:True 71:True 72:True 73:True 74:True 75:True 76:True 77:True 78:True 79:True 80:True 81:True 82:True 83:True 84:True 85:True 86:True 87:True 88:True 89:True 90:True 91:True 92:True 93:True 94:True 95:True 96:True 97:True 98:True 99:True 100:True 101:True 102:True 103:True 104:True 105:True 106:True 107:True 108:True 109:True 110:True 111:True 112:True 113:True 114:True 115:True 116:True 117:True 118:True 119:True 120:True 121:True 122:True 123:True 124:True 125:True 126:True 127:True 128:True 129:True 130:True 131:True 132:True 133:True 134:True 135:True 136:True 137:True 138:True 139:True 140:True 141:True 142:True 143:True 144:True 145:True 146:True 147:True 148:True 149:True 150:True 151:True 152:True 153:True 154:True 155:True 156:True 157:True 158:True 159:True\n",
"INFO:tensorflow:input_ids: 101 2054 2003 1996 3078 8705 1997 1996 7769 1997 1996 4151 2892 1029 102 1996 2118 2003 1996 2350 2835 1997 1996 7769 1997 4151 2892 1006 12167 2025 2049 2880 4075 1010 2029 2024 1999 4199 1007 1012 2049 2364 8705 1010 2062 4887 8705 1010 2003 2284 2006 1996 3721 2408 2358 1012 3312 2697 2013 1996 2364 2311 1012 2214 2267 1010 1996 4587 2311 2006 3721 1998 2284 2379 1996 5370 1997 2358 1012 2984 2697 1010 3506 8324 18014 7066 1012 3394 8656 1998 3428 13960 1999 27596 2160 1006 1037 2280 7822 2415 1007 1010 4151 2892 2160 1010 2004 2092 2004 8902 25438 2050 2534 2379 1996 24665 23052 1012 1996 2118 2083 1996 2062 4887 8705 2038 7208 2000 17200 5406 20934 15937 3678 1012 2096 2025 3234 1010 20934 15937 3678 2038 5868 4898 2013 10289 8214 1998 2062 4887 8705 2580 1037 20934 15937 3678 3396 2005 17979 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:start_position: 44\n",
"INFO:tensorflow:end_position: 46\n",
"INFO:tensorflow:answer: more ##au seminary\n",
"INFO:tensorflow:*** Example ***\n",
"INFO:tensorflow:unique_id: 1000000012\n",
"INFO:tensorflow:example_index: 12\n",
"INFO:tensorflow:doc_span_index: 0\n",
"INFO:tensorflow:tokens: [CLS] what is the oldest structure at notre dame ? [SEP] the university is the major seat of the congregation of holy cross ( albeit not its official headquarters , which are in rome ) . its main seminary , more ##au seminary , is located on the campus across st . joseph lake from the main building . old college , the oldest building on campus and located near the shore of st . mary lake , houses undergraduate seminar ##ians . retired priests and brothers reside in fatima house ( a former retreat center ) , holy cross house , as well as col ##umb ##a hall near the gr ##otto . the university through the more ##au seminary has ties to theologian frederick bu ##ech ##ner . while not catholic , bu ##ech ##ner has praised writers from notre dame and more ##au seminary created a bu ##ech ##ner prize for preaching . [SEP]\n",
"INFO:tensorflow:token_to_orig_map: 11:0 12:1 13:2 14:3 15:4 16:5 17:6 18:7 19:8 20:9 21:10 22:11 23:12 24:12 25:13 26:14 27:15 28:16 29:16 30:17 31:18 32:19 33:20 34:20 35:20 36:21 37:22 38:23 39:23 40:24 41:24 42:25 43:25 44:26 45:27 46:28 47:29 48:30 49:31 50:32 51:32 52:33 53:34 54:35 55:36 56:37 57:38 58:38 59:39 60:40 61:40 62:41 63:42 64:43 65:44 66:45 67:46 68:47 69:48 70:49 71:50 72:51 73:52 74:52 75:53 76:54 77:54 78:55 79:56 80:57 81:57 82:57 83:58 84:59 85:60 86:61 87:62 88:63 89:64 90:65 91:66 92:66 93:67 94:68 95:69 96:69 97:69 98:70 99:71 100:72 101:72 102:73 103:74 104:75 105:76 106:76 107:76 108:77 109:78 110:79 111:80 112:80 113:80 114:81 115:82 116:83 117:84 118:85 119:85 120:86 121:87 122:88 123:89 124:90 125:91 126:92 127:92 128:92 129:92 130:93 131:94 132:95 133:95 134:96 135:96 136:96 137:97 138:98 139:99 140:100 141:101 142:102 143:103 144:104 145:104 146:105 147:106 148:107 149:108 150:108 151:108 152:109 153:110 154:111 155:111\n",
"INFO:tensorflow:token_is_max_context: 11:True 12:True 13:True 14:True 15:True 16:True 17:True 18:True 19:True 20:True 21:True 22:True 23:True 24:True 25:True 26:True 27:True 28:True 29:True 30:True 31:True 32:True 33:True 34:True 35:True 36:True 37:True 38:True 39:True 40:True 41:True 42:True 43:True 44:True 45:True 46:True 47:True 48:True 49:True 50:True 51:True 52:True 53:True 54:True 55:True 56:True 57:True 58:True 59:True 60:True 61:True 62:True 63:True 64:True 65:True 66:True 67:True 68:True 69:True 70:True 71:True 72:True 73:True 74:True 75:True 76:True 77:True 78:True 79:True 80:True 81:True 82:True 83:True 84:True 85:True 86:True 87:True 88:True 89:True 90:True 91:True 92:True 93:True 94:True 95:True 96:True 97:True 98:True 99:True 100:True 101:True 102:True 103:True 104:True 105:True 106:True 107:True 108:True 109:True 110:True 111:True 112:True 113:True 114:True 115:True 116:True 117:True 118:True 119:True 120:True 121:True 122:True 123:True 124:True 125:True 126:True 127:True 128:True 129:True 130:True 131:True 132:True 133:True 134:True 135:True 136:True 137:True 138:True 139:True 140:True 141:True 142:True 143:True 144:True 145:True 146:True 147:True 148:True 149:True 150:True 151:True 152:True 153:True 154:True 155:True\n",
"INFO:tensorflow:input_ids: 101 2054 2003 1996 4587 3252 2012 10289 8214 1029 102 1996 2118 2003 1996 2350 2835 1997 1996 7769 1997 4151 2892 1006 12167 2025 2049 2880 4075 1010 2029 2024 1999 4199 1007 1012 2049 2364 8705 1010 2062 4887 8705 1010 2003 2284 2006 1996 3721 2408 2358 1012 3312 2697 2013 1996 2364 2311 1012 2214 2267 1010 1996 4587 2311 2006 3721 1998 2284 2379 1996 5370 1997 2358 1012 2984 2697 1010 3506 8324 18014 7066 1012 3394 8656 1998 3428 13960 1999 27596 2160 1006 1037 2280 7822 2415 1007 1010 4151 2892 2160 1010 2004 2092 2004 8902 25438 2050 2534 2379 1996 24665 23052 1012 1996 2118 2083 1996 2062 4887 8705 2038 7208 2000 17200 5406 20934 15937 3678 1012 2096 2025 3234 1010 20934 15937 3678 2038 5868 4898 2013 10289 8214 1998 2062 4887 8705 2580 1037 20934 15937 3678 3396 2005 17979 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:start_position: 59\n",
"INFO:tensorflow:end_position: 60\n",
"INFO:tensorflow:answer: old college\n",
"INFO:tensorflow:*** Example ***\n",
"INFO:tensorflow:unique_id: 1000000013\n",
"INFO:tensorflow:example_index: 13\n",
"INFO:tensorflow:doc_span_index: 0\n",
"INFO:tensorflow:tokens: [CLS] what individuals live at fatima house at notre dame ? [SEP] the university is the major seat of the congregation of holy cross ( albeit not its official headquarters , which are in rome ) . its main seminary , more ##au seminary , is located on the campus across st . joseph lake from the main building . old college , the oldest building on campus and located near the shore of st . mary lake , houses undergraduate seminar ##ians . retired priests and brothers reside in fatima house ( a former retreat center ) , holy cross house , as well as col ##umb ##a hall near the gr ##otto . the university through the more ##au seminary has ties to theologian frederick bu ##ech ##ner . while not catholic , bu ##ech ##ner has praised writers from notre dame and more ##au seminary created a bu ##ech ##ner prize for preaching . [SEP]\n",
"INFO:tensorflow:token_to_orig_map: 12:0 13:1 14:2 15:3 16:4 17:5 18:6 19:7 20:8 21:9 22:10 23:11 24:12 25:12 26:13 27:14 28:15 29:16 30:16 31:17 32:18 33:19 34:20 35:20 36:20 37:21 38:22 39:23 40:23 41:24 42:24 43:25 44:25 45:26 46:27 47:28 48:29 49:30 50:31 51:32 52:32 53:33 54:34 55:35 56:36 57:37 58:38 59:38 60:39 61:40 62:40 63:41 64:42 65:43 66:44 67:45 68:46 69:47 70:48 71:49 72:50 73:51 74:52 75:52 76:53 77:54 78:54 79:55 80:56 81:57 82:57 83:57 84:58 85:59 86:60 87:61 88:62 89:63 90:64 91:65 92:66 93:66 94:67 95:68 96:69 97:69 98:69 99:70 100:71 101:72 102:72 103:73 104:74 105:75 106:76 107:76 108:76 109:77 110:78 111:79 112:80 113:80 114:80 115:81 116:82 117:83 118:84 119:85 120:85 121:86 122:87 123:88 124:89 125:90 126:91 127:92 128:92 129:92 130:92 131:93 132:94 133:95 134:95 135:96 136:96 137:96 138:97 139:98 140:99 141:100 142:101 143:102 144:103 145:104 146:104 147:105 148:106 149:107 150:108 151:108 152:108 153:109 154:110 155:111 156:111\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:token_is_max_context: 12:True 13:True 14:True 15:True 16:True 17:True 18:True 19:True 20:True 21:True 22:True 23:True 24:True 25:True 26:True 27:True 28:True 29:True 30:True 31:True 32:True 33:True 34:True 35:True 36:True 37:True 38:True 39:True 40:True 41:True 42:True 43:True 44:True 45:True 46:True 47:True 48:True 49:True 50:True 51:True 52:True 53:True 54:True 55:True 56:True 57:True 58:True 59:True 60:True 61:True 62:True 63:True 64:True 65:True 66:True 67:True 68:True 69:True 70:True 71:True 72:True 73:True 74:True 75:True 76:True 77:True 78:True 79:True 80:True 81:True 82:True 83:True 84:True 85:True 86:True 87:True 88:True 89:True 90:True 91:True 92:True 93:True 94:True 95:True 96:True 97:True 98:True 99:True 100:True 101:True 102:True 103:True 104:True 105:True 106:True 107:True 108:True 109:True 110:True 111:True 112:True 113:True 114:True 115:True 116:True 117:True 118:True 119:True 120:True 121:True 122:True 123:True 124:True 125:True 126:True 127:True 128:True 129:True 130:True 131:True 132:True 133:True 134:True 135:True 136:True 137:True 138:True 139:True 140:True 141:True 142:True 143:True 144:True 145:True 146:True 147:True 148:True 149:True 150:True 151:True 152:True 153:True 154:True 155:True 156:True\n",
"INFO:tensorflow:input_ids: 101 2054 3633 2444 2012 27596 2160 2012 10289 8214 1029 102 1996 2118 2003 1996 2350 2835 1997 1996 7769 1997 4151 2892 1006 12167 2025 2049 2880 4075 1010 2029 2024 1999 4199 1007 1012 2049 2364 8705 1010 2062 4887 8705 1010 2003 2284 2006 1996 3721 2408 2358 1012 3312 2697 2013 1996 2364 2311 1012 2214 2267 1010 1996 4587 2311 2006 3721 1998 2284 2379 1996 5370 1997 2358 1012 2984 2697 1010 3506 8324 18014 7066 1012 3394 8656 1998 3428 13960 1999 27596 2160 1006 1037 2280 7822 2415 1007 1010 4151 2892 2160 1010 2004 2092 2004 8902 25438 2050 2534 2379 1996 24665 23052 1012 1996 2118 2083 1996 2062 4887 8705 2038 7208 2000 17200 5406 20934 15937 3678 1012 2096 2025 3234 1010 20934 15937 3678 2038 5868 4898 2013 10289 8214 1998 2062 4887 8705 2580 1037 20934 15937 3678 3396 2005 17979 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:start_position: 84\n",
"INFO:tensorflow:end_position: 87\n",
"INFO:tensorflow:answer: retired priests and brothers\n",
"INFO:tensorflow:*** Example ***\n",
"INFO:tensorflow:unique_id: 1000000014\n",
"INFO:tensorflow:example_index: 14\n",
"INFO:tensorflow:doc_span_index: 0\n",
"INFO:tensorflow:tokens: [CLS] which prize did frederick bu ##ech ##ner create ? [SEP] the university is the major seat of the congregation of holy cross ( albeit not its official headquarters , which are in rome ) . its main seminary , more ##au seminary , is located on the campus across st . joseph lake from the main building . old college , the oldest building on campus and located near the shore of st . mary lake , houses undergraduate seminar ##ians . retired priests and brothers reside in fatima house ( a former retreat center ) , holy cross house , as well as col ##umb ##a hall near the gr ##otto . the university through the more ##au seminary has ties to theologian frederick bu ##ech ##ner . while not catholic , bu ##ech ##ner has praised writers from notre dame and more ##au seminary created a bu ##ech ##ner prize for preaching . [SEP]\n",
"INFO:tensorflow:token_to_orig_map: 11:0 12:1 13:2 14:3 15:4 16:5 17:6 18:7 19:8 20:9 21:10 22:11 23:12 24:12 25:13 26:14 27:15 28:16 29:16 30:17 31:18 32:19 33:20 34:20 35:20 36:21 37:22 38:23 39:23 40:24 41:24 42:25 43:25 44:26 45:27 46:28 47:29 48:30 49:31 50:32 51:32 52:33 53:34 54:35 55:36 56:37 57:38 58:38 59:39 60:40 61:40 62:41 63:42 64:43 65:44 66:45 67:46 68:47 69:48 70:49 71:50 72:51 73:52 74:52 75:53 76:54 77:54 78:55 79:56 80:57 81:57 82:57 83:58 84:59 85:60 86:61 87:62 88:63 89:64 90:65 91:66 92:66 93:67 94:68 95:69 96:69 97:69 98:70 99:71 100:72 101:72 102:73 103:74 104:75 105:76 106:76 107:76 108:77 109:78 110:79 111:80 112:80 113:80 114:81 115:82 116:83 117:84 118:85 119:85 120:86 121:87 122:88 123:89 124:90 125:91 126:92 127:92 128:92 129:92 130:93 131:94 132:95 133:95 134:96 135:96 136:96 137:97 138:98 139:99 140:100 141:101 142:102 143:103 144:104 145:104 146:105 147:106 148:107 149:108 150:108 151:108 152:109 153:110 154:111 155:111\n",
"INFO:tensorflow:token_is_max_context: 11:True 12:True 13:True 14:True 15:True 16:True 17:True 18:True 19:True 20:True 21:True 22:True 23:True 24:True 25:True 26:True 27:True 28:True 29:True 30:True 31:True 32:True 33:True 34:True 35:True 36:True 37:True 38:True 39:True 40:True 41:True 42:True 43:True 44:True 45:True 46:True 47:True 48:True 49:True 50:True 51:True 52:True 53:True 54:True 55:True 56:True 57:True 58:True 59:True 60:True 61:True 62:True 63:True 64:True 65:True 66:True 67:True 68:True 69:True 70:True 71:True 72:True 73:True 74:True 75:True 76:True 77:True 78:True 79:True 80:True 81:True 82:True 83:True 84:True 85:True 86:True 87:True 88:True 89:True 90:True 91:True 92:True 93:True 94:True 95:True 96:True 97:True 98:True 99:True 100:True 101:True 102:True 103:True 104:True 105:True 106:True 107:True 108:True 109:True 110:True 111:True 112:True 113:True 114:True 115:True 116:True 117:True 118:True 119:True 120:True 121:True 122:True 123:True 124:True 125:True 126:True 127:True 128:True 129:True 130:True 131:True 132:True 133:True 134:True 135:True 136:True 137:True 138:True 139:True 140:True 141:True 142:True 143:True 144:True 145:True 146:True 147:True 148:True 149:True 150:True 151:True 152:True 153:True 154:True 155:True\n",
"INFO:tensorflow:input_ids: 101 2029 3396 2106 5406 20934 15937 3678 3443 1029 102 1996 2118 2003 1996 2350 2835 1997 1996 7769 1997 4151 2892 1006 12167 2025 2049 2880 4075 1010 2029 2024 1999 4199 1007 1012 2049 2364 8705 1010 2062 4887 8705 1010 2003 2284 2006 1996 3721 2408 2358 1012 3312 2697 2013 1996 2364 2311 1012 2214 2267 1010 1996 4587 2311 2006 3721 1998 2284 2379 1996 5370 1997 2358 1012 2984 2697 1010 3506 8324 18014 7066 1012 3394 8656 1998 3428 13960 1999 27596 2160 1006 1037 2280 7822 2415 1007 1010 4151 2892 2160 1010 2004 2092 2004 8902 25438 2050 2534 2379 1996 24665 23052 1012 1996 2118 2083 1996 2062 4887 8705 2038 7208 2000 17200 5406 20934 15937 3678 1012 2096 2025 3234 1010 20934 15937 3678 2038 5868 4898 2013 10289 8214 1998 2062 4887 8705 2580 1037 20934 15937 3678 3396 2005 17979 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:start_position: 149\n",
"INFO:tensorflow:end_position: 154\n",
"INFO:tensorflow:answer: bu ##ech ##ner prize for preaching\n",
"INFO:tensorflow:*** Example ***\n",
"INFO:tensorflow:unique_id: 1000000015\n",
"INFO:tensorflow:example_index: 15\n",
"INFO:tensorflow:doc_span_index: 0\n",
"INFO:tensorflow:tokens: [CLS] how many bs level degrees are offered in the college of engineering at notre dame ? [SEP] the college of engineering was established in 1920 , however , early courses in civil and mechanical engineering were a part of the college of science since the 1870s . today the college , housed in the fitzpatrick , cu ##shing , and st ##ins ##on - re ##mic ##k halls of engineering , includes five departments of study – aerospace and mechanical engineering , chemical and bio ##mo ##le ##cular engineering , civil engineering and geological sciences , computer science and engineering , and electrical engineering – with eight b . s . degrees offered . additionally , the college offers five - year dual degree programs with the colleges of arts and letters and of business awarding additional b . a . and master of business administration ( mba ) degrees , respectively . [SEP]\n",
"INFO:tensorflow:token_to_orig_map: 18:0 19:1 20:2 21:3 22:4 23:5 24:6 25:7 26:7 27:8 28:8 29:9 30:10 31:11 32:12 33:13 34:14 35:15 36:16 37:17 38:18 39:19 40:20 41:21 42:22 43:23 44:24 45:25 46:26 47:26 48:27 49:28 50:29 51:29 52:30 53:31 54:32 55:33 56:33 57:34 58:34 59:34 60:35 61:36 62:36 63:36 64:36 65:36 66:36 67:36 68:37 69:38 70:39 71:39 72:40 73:41 74:42 75:43 76:44 77:45 78:46 79:47 80:48 81:49 82:49 83:50 84:51 85:52 86:52 87:52 88:52 89:53 90:53 91:54 92:55 93:56 94:57 95:58 96:58 97:59 98:60 99:61 100:62 101:62 102:63 103:64 104:65 105:66 106:67 107:68 108:69 109:69 110:69 111:69 112:70 113:71 114:71 115:72 116:72 117:73 118:74 119:75 120:76 121:76 122:76 123:77 124:78 125:79 126:80 127:81 128:82 129:83 130:84 131:85 132:86 133:87 134:88 135:89 136:90 137:91 138:92 139:92 140:92 141:92 142:93 143:94 144:95 145:96 146:97 147:98 148:98 149:98 150:99 151:99 152:100 153:100\n",
"INFO:tensorflow:token_is_max_context: 18:True 19:True 20:True 21:True 22:True 23:True 24:True 25:True 26:True 27:True 28:True 29:True 30:True 31:True 32:True 33:True 34:True 35:True 36:True 37:True 38:True 39:True 40:True 41:True 42:True 43:True 44:True 45:True 46:True 47:True 48:True 49:True 50:True 51:True 52:True 53:True 54:True 55:True 56:True 57:True 58:True 59:True 60:True 61:True 62:True 63:True 64:True 65:True 66:True 67:True 68:True 69:True 70:True 71:True 72:True 73:True 74:True 75:True 76:True 77:True 78:True 79:True 80:True 81:True 82:True 83:True 84:True 85:True 86:True 87:True 88:True 89:True 90:True 91:True 92:True 93:True 94:True 95:True 96:True 97:True 98:True 99:True 100:True 101:True 102:True 103:True 104:True 105:True 106:True 107:True 108:True 109:True 110:True 111:True 112:True 113:True 114:True 115:True 116:True 117:True 118:True 119:True 120:True 121:True 122:True 123:True 124:True 125:True 126:True 127:True 128:True 129:True 130:True 131:True 132:True 133:True 134:True 135:True 136:True 137:True 138:True 139:True 140:True 141:True 142:True 143:True 144:True 145:True 146:True 147:True 148:True 149:True 150:True 151:True 152:True 153:True\n",
"INFO:tensorflow:input_ids: 101 2129 2116 18667 2504 5445 2024 3253 1999 1996 2267 1997 3330 2012 10289 8214 1029 102 1996 2267 1997 3330 2001 2511 1999 4444 1010 2174 1010 2220 5352 1999 2942 1998 6228 3330 2020 1037 2112 1997 1996 2267 1997 2671 2144 1996 14896 1012 2651 1996 2267 1010 7431 1999 1996 26249 1010 12731 12227 1010 1998 2358 7076 2239 1011 2128 7712 2243 9873 1997 3330 1010 2950 2274 7640 1997 2817 1516 13395 1998 6228 3330 1010 5072 1998 16012 5302 2571 15431 3330 1010 2942 3330 1998 9843 4163 1010 3274 2671 1998 3330 1010 1998 5992 3330 1516 2007 2809 1038 1012 1055 1012 5445 3253 1012 5678 1010 1996 2267 4107 2274 1011 2095 7037 3014 3454 2007 1996 6667 1997 2840 1998 4144 1998 1997 2449 21467 3176 1038 1012 1037 1012 1998 3040 1997 2449 3447 1006 15038 1007 5445 1010 4414 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:start_position: 107\n",
"INFO:tensorflow:end_position: 107\n",
"INFO:tensorflow:answer: eight\n",
"INFO:tensorflow:*** Example ***\n",
"INFO:tensorflow:unique_id: 1000000016\n",
"INFO:tensorflow:example_index: 16\n",
"INFO:tensorflow:doc_span_index: 0\n",
"INFO:tensorflow:tokens: [CLS] in what year was the college of engineering at notre dame formed ? [SEP] the college of engineering was established in 1920 , however , early courses in civil and mechanical engineering were a part of the college of science since the 1870s . today the college , housed in the fitzpatrick , cu ##shing , and st ##ins ##on - re ##mic ##k halls of engineering , includes five departments of study – aerospace and mechanical engineering , chemical and bio ##mo ##le ##cular engineering , civil engineering and geological sciences , computer science and engineering , and electrical engineering – with eight b . s . degrees offered . additionally , the college offers five - year dual degree programs with the colleges of arts and letters and of business awarding additional b . a . and master of business administration ( mba ) degrees , respectively . [SEP]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:token_to_orig_map: 15:0 16:1 17:2 18:3 19:4 20:5 21:6 22:7 23:7 24:8 25:8 26:9 27:10 28:11 29:12 30:13 31:14 32:15 33:16 34:17 35:18 36:19 37:20 38:21 39:22 40:23 41:24 42:25 43:26 44:26 45:27 46:28 47:29 48:29 49:30 50:31 51:32 52:33 53:33 54:34 55:34 56:34 57:35 58:36 59:36 60:36 61:36 62:36 63:36 64:36 65:37 66:38 67:39 68:39 69:40 70:41 71:42 72:43 73:44 74:45 75:46 76:47 77:48 78:49 79:49 80:50 81:51 82:52 83:52 84:52 85:52 86:53 87:53 88:54 89:55 90:56 91:57 92:58 93:58 94:59 95:60 96:61 97:62 98:62 99:63 100:64 101:65 102:66 103:67 104:68 105:69 106:69 107:69 108:69 109:70 110:71 111:71 112:72 113:72 114:73 115:74 116:75 117:76 118:76 119:76 120:77 121:78 122:79 123:80 124:81 125:82 126:83 127:84 128:85 129:86 130:87 131:88 132:89 133:90 134:91 135:92 136:92 137:92 138:92 139:93 140:94 141:95 142:96 143:97 144:98 145:98 146:98 147:99 148:99 149:100 150:100\n",
"INFO:tensorflow:token_is_max_context: 15:True 16:True 17:True 18:True 19:True 20:True 21:True 22:True 23:True 24:True 25:True 26:True 27:True 28:True 29:True 30:True 31:True 32:True 33:True 34:True 35:True 36:True 37:True 38:True 39:True 40:True 41:True 42:True 43:True 44:True 45:True 46:True 47:True 48:True 49:True 50:True 51:True 52:True 53:True 54:True 55:True 56:True 57:True 58:True 59:True 60:True 61:True 62:True 63:True 64:True 65:True 66:True 67:True 68:True 69:True 70:True 71:True 72:True 73:True 74:True 75:True 76:True 77:True 78:True 79:True 80:True 81:True 82:True 83:True 84:True 85:True 86:True 87:True 88:True 89:True 90:True 91:True 92:True 93:True 94:True 95:True 96:True 97:True 98:True 99:True 100:True 101:True 102:True 103:True 104:True 105:True 106:True 107:True 108:True 109:True 110:True 111:True 112:True 113:True 114:True 115:True 116:True 117:True 118:True 119:True 120:True 121:True 122:True 123:True 124:True 125:True 126:True 127:True 128:True 129:True 130:True 131:True 132:True 133:True 134:True 135:True 136:True 137:True 138:True 139:True 140:True 141:True 142:True 143:True 144:True 145:True 146:True 147:True 148:True 149:True 150:True\n",
"INFO:tensorflow:input_ids: 101 1999 2054 2095 2001 1996 2267 1997 3330 2012 10289 8214 2719 1029 102 1996 2267 1997 3330 2001 2511 1999 4444 1010 2174 1010 2220 5352 1999 2942 1998 6228 3330 2020 1037 2112 1997 1996 2267 1997 2671 2144 1996 14896 1012 2651 1996 2267 1010 7431 1999 1996 26249 1010 12731 12227 1010 1998 2358 7076 2239 1011 2128 7712 2243 9873 1997 3330 1010 2950 2274 7640 1997 2817 1516 13395 1998 6228 3330 1010 5072 1998 16012 5302 2571 15431 3330 1010 2942 3330 1998 9843 4163 1010 3274 2671 1998 3330 1010 1998 5992 3330 1516 2007 2809 1038 1012 1055 1012 5445 3253 1012 5678 1010 1996 2267 4107 2274 1011 2095 7037 3014 3454 2007 1996 6667 1997 2840 1998 4144 1998 1997 2449 21467 3176 1038 1012 1037 1012 1998 3040 1997 2449 3447 1006 15038 1007 5445 1010 4414 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:start_position: 22\n",
"INFO:tensorflow:end_position: 22\n",
"INFO:tensorflow:answer: 1920\n",
"INFO:tensorflow:*** Example ***\n",
"INFO:tensorflow:unique_id: 1000000017\n",
"INFO:tensorflow:example_index: 17\n",
"INFO:tensorflow:doc_span_index: 0\n",
"INFO:tensorflow:tokens: [CLS] before the creation of the college of engineering similar studies were carried out at which notre dame college ? [SEP] the college of engineering was established in 1920 , however , early courses in civil and mechanical engineering were a part of the college of science since the 1870s . today the college , housed in the fitzpatrick , cu ##shing , and st ##ins ##on - re ##mic ##k halls of engineering , includes five departments of study – aerospace and mechanical engineering , chemical and bio ##mo ##le ##cular engineering , civil engineering and geological sciences , computer science and engineering , and electrical engineering – with eight b . s . degrees offered . additionally , the college offers five - year dual degree programs with the colleges of arts and letters and of business awarding additional b . a . and master of business administration ( mba ) degrees , respectively . [SEP]\n",
"INFO:tensorflow:token_to_orig_map: 21:0 22:1 23:2 24:3 25:4 26:5 27:6 28:7 29:7 30:8 31:8 32:9 33:10 34:11 35:12 36:13 37:14 38:15 39:16 40:17 41:18 42:19 43:20 44:21 45:22 46:23 47:24 48:25 49:26 50:26 51:27 52:28 53:29 54:29 55:30 56:31 57:32 58:33 59:33 60:34 61:34 62:34 63:35 64:36 65:36 66:36 67:36 68:36 69:36 70:36 71:37 72:38 73:39 74:39 75:40 76:41 77:42 78:43 79:44 80:45 81:46 82:47 83:48 84:49 85:49 86:50 87:51 88:52 89:52 90:52 91:52 92:53 93:53 94:54 95:55 96:56 97:57 98:58 99:58 100:59 101:60 102:61 103:62 104:62 105:63 106:64 107:65 108:66 109:67 110:68 111:69 112:69 113:69 114:69 115:70 116:71 117:71 118:72 119:72 120:73 121:74 122:75 123:76 124:76 125:76 126:77 127:78 128:79 129:80 130:81 131:82 132:83 133:84 134:85 135:86 136:87 137:88 138:89 139:90 140:91 141:92 142:92 143:92 144:92 145:93 146:94 147:95 148:96 149:97 150:98 151:98 152:98 153:99 154:99 155:100 156:100\n",
"INFO:tensorflow:token_is_max_context: 21:True 22:True 23:True 24:True 25:True 26:True 27:True 28:True 29:True 30:True 31:True 32:True 33:True 34:True 35:True 36:True 37:True 38:True 39:True 40:True 41:True 42:True 43:True 44:True 45:True 46:True 47:True 48:True 49:True 50:True 51:True 52:True 53:True 54:True 55:True 56:True 57:True 58:True 59:True 60:True 61:True 62:True 63:True 64:True 65:True 66:True 67:True 68:True 69:True 70:True 71:True 72:True 73:True 74:True 75:True 76:True 77:True 78:True 79:True 80:True 81:True 82:True 83:True 84:True 85:True 86:True 87:True 88:True 89:True 90:True 91:True 92:True 93:True 94:True 95:True 96:True 97:True 98:True 99:True 100:True 101:True 102:True 103:True 104:True 105:True 106:True 107:True 108:True 109:True 110:True 111:True 112:True 113:True 114:True 115:True 116:True 117:True 118:True 119:True 120:True 121:True 122:True 123:True 124:True 125:True 126:True 127:True 128:True 129:True 130:True 131:True 132:True 133:True 134:True 135:True 136:True 137:True 138:True 139:True 140:True 141:True 142:True 143:True 144:True 145:True 146:True 147:True 148:True 149:True 150:True 151:True 152:True 153:True 154:True 155:True 156:True\n",
"INFO:tensorflow:input_ids: 101 2077 1996 4325 1997 1996 2267 1997 3330 2714 2913 2020 3344 2041 2012 2029 10289 8214 2267 1029 102 1996 2267 1997 3330 2001 2511 1999 4444 1010 2174 1010 2220 5352 1999 2942 1998 6228 3330 2020 1037 2112 1997 1996 2267 1997 2671 2144 1996 14896 1012 2651 1996 2267 1010 7431 1999 1996 26249 1010 12731 12227 1010 1998 2358 7076 2239 1011 2128 7712 2243 9873 1997 3330 1010 2950 2274 7640 1997 2817 1516 13395 1998 6228 3330 1010 5072 1998 16012 5302 2571 15431 3330 1010 2942 3330 1998 9843 4163 1010 3274 2671 1998 3330 1010 1998 5992 3330 1516 2007 2809 1038 1012 1055 1012 5445 3253 1012 5678 1010 1996 2267 4107 2274 1011 2095 7037 3014 3454 2007 1996 6667 1997 2840 1998 4144 1998 1997 2449 21467 3176 1038 1012 1037 1012 1998 3040 1997 2449 3447 1006 15038 1007 5445 1010 4414 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:start_position: 43\n",
"INFO:tensorflow:end_position: 46\n",
"INFO:tensorflow:answer: the college of science\n",
"INFO:tensorflow:*** Example ***\n",
"INFO:tensorflow:unique_id: 1000000018\n",
"INFO:tensorflow:example_index: 18\n",
"INFO:tensorflow:doc_span_index: 0\n",
"INFO:tensorflow:tokens: [CLS] how many departments are within the st ##ins ##on - re ##mic ##k hall of engineering ? [SEP] the college of engineering was established in 1920 , however , early courses in civil and mechanical engineering were a part of the college of science since the 1870s . today the college , housed in the fitzpatrick , cu ##shing , and st ##ins ##on - re ##mic ##k halls of engineering , includes five departments of study – aerospace and mechanical engineering , chemical and bio ##mo ##le ##cular engineering , civil engineering and geological sciences , computer science and engineering , and electrical engineering – with eight b . s . degrees offered . additionally , the college offers five - year dual degree programs with the colleges of arts and letters and of business awarding additional b . a . and master of business administration ( mba ) degrees , respectively . [SEP]\n",
"INFO:tensorflow:token_to_orig_map: 19:0 20:1 21:2 22:3 23:4 24:5 25:6 26:7 27:7 28:8 29:8 30:9 31:10 32:11 33:12 34:13 35:14 36:15 37:16 38:17 39:18 40:19 41:20 42:21 43:22 44:23 45:24 46:25 47:26 48:26 49:27 50:28 51:29 52:29 53:30 54:31 55:32 56:33 57:33 58:34 59:34 60:34 61:35 62:36 63:36 64:36 65:36 66:36 67:36 68:36 69:37 70:38 71:39 72:39 73:40 74:41 75:42 76:43 77:44 78:45 79:46 80:47 81:48 82:49 83:49 84:50 85:51 86:52 87:52 88:52 89:52 90:53 91:53 92:54 93:55 94:56 95:57 96:58 97:58 98:59 99:60 100:61 101:62 102:62 103:63 104:64 105:65 106:66 107:67 108:68 109:69 110:69 111:69 112:69 113:70 114:71 115:71 116:72 117:72 118:73 119:74 120:75 121:76 122:76 123:76 124:77 125:78 126:79 127:80 128:81 129:82 130:83 131:84 132:85 133:86 134:87 135:88 136:89 137:90 138:91 139:92 140:92 141:92 142:92 143:93 144:94 145:95 146:96 147:97 148:98 149:98 150:98 151:99 152:99 153:100 154:100\n",
"INFO:tensorflow:token_is_max_context: 19:True 20:True 21:True 22:True 23:True 24:True 25:True 26:True 27:True 28:True 29:True 30:True 31:True 32:True 33:True 34:True 35:True 36:True 37:True 38:True 39:True 40:True 41:True 42:True 43:True 44:True 45:True 46:True 47:True 48:True 49:True 50:True 51:True 52:True 53:True 54:True 55:True 56:True 57:True 58:True 59:True 60:True 61:True 62:True 63:True 64:True 65:True 66:True 67:True 68:True 69:True 70:True 71:True 72:True 73:True 74:True 75:True 76:True 77:True 78:True 79:True 80:True 81:True 82:True 83:True 84:True 85:True 86:True 87:True 88:True 89:True 90:True 91:True 92:True 93:True 94:True 95:True 96:True 97:True 98:True 99:True 100:True 101:True 102:True 103:True 104:True 105:True 106:True 107:True 108:True 109:True 110:True 111:True 112:True 113:True 114:True 115:True 116:True 117:True 118:True 119:True 120:True 121:True 122:True 123:True 124:True 125:True 126:True 127:True 128:True 129:True 130:True 131:True 132:True 133:True 134:True 135:True 136:True 137:True 138:True 139:True 140:True 141:True 142:True 143:True 144:True 145:True 146:True 147:True 148:True 149:True 150:True 151:True 152:True 153:True 154:True\n",
"INFO:tensorflow:input_ids: 101 2129 2116 7640 2024 2306 1996 2358 7076 2239 1011 2128 7712 2243 2534 1997 3330 1029 102 1996 2267 1997 3330 2001 2511 1999 4444 1010 2174 1010 2220 5352 1999 2942 1998 6228 3330 2020 1037 2112 1997 1996 2267 1997 2671 2144 1996 14896 1012 2651 1996 2267 1010 7431 1999 1996 26249 1010 12731 12227 1010 1998 2358 7076 2239 1011 2128 7712 2243 9873 1997 3330 1010 2950 2274 7640 1997 2817 1516 13395 1998 6228 3330 1010 5072 1998 16012 5302 2571 15431 3330 1010 2942 3330 1998 9843 4163 1010 3274 2671 1998 3330 1010 1998 5992 3330 1516 2007 2809 1038 1012 1055 1012 5445 3253 1012 5678 1010 1996 2267 4107 2274 1011 2095 7037 3014 3454 2007 1996 6667 1997 2840 1998 4144 1998 1997 2449 21467 3176 1038 1012 1037 1012 1998 3040 1997 2449 3447 1006 15038 1007 5445 1010 4414 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:start_position: 74\n",
"INFO:tensorflow:end_position: 74\n",
"INFO:tensorflow:answer: five\n",
"INFO:tensorflow:*** Example ***\n",
"INFO:tensorflow:unique_id: 1000000019\n",
"INFO:tensorflow:example_index: 19\n",
"INFO:tensorflow:doc_span_index: 0\n",
"INFO:tensorflow:tokens: [CLS] the college of science began to offer civil engineering courses beginning at what time at notre dame ? [SEP] the college of engineering was established in 1920 , however , early courses in civil and mechanical engineering were a part of the college of science since the 1870s . today the college , housed in the fitzpatrick , cu ##shing , and st ##ins ##on - re ##mic ##k halls of engineering , includes five departments of study – aerospace and mechanical engineering , chemical and bio ##mo ##le ##cular engineering , civil engineering and geological sciences , computer science and engineering , and electrical engineering – with eight b . s . degrees offered . additionally , the college offers five - year dual degree programs with the colleges of arts and letters and of business awarding additional b . a . and master of business administration ( mba ) degrees , respectively . [SEP]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:token_to_orig_map: 20:0 21:1 22:2 23:3 24:4 25:5 26:6 27:7 28:7 29:8 30:8 31:9 32:10 33:11 34:12 35:13 36:14 37:15 38:16 39:17 40:18 41:19 42:20 43:21 44:22 45:23 46:24 47:25 48:26 49:26 50:27 51:28 52:29 53:29 54:30 55:31 56:32 57:33 58:33 59:34 60:34 61:34 62:35 63:36 64:36 65:36 66:36 67:36 68:36 69:36 70:37 71:38 72:39 73:39 74:40 75:41 76:42 77:43 78:44 79:45 80:46 81:47 82:48 83:49 84:49 85:50 86:51 87:52 88:52 89:52 90:52 91:53 92:53 93:54 94:55 95:56 96:57 97:58 98:58 99:59 100:60 101:61 102:62 103:62 104:63 105:64 106:65 107:66 108:67 109:68 110:69 111:69 112:69 113:69 114:70 115:71 116:71 117:72 118:72 119:73 120:74 121:75 122:76 123:76 124:76 125:77 126:78 127:79 128:80 129:81 130:82 131:83 132:84 133:85 134:86 135:87 136:88 137:89 138:90 139:91 140:92 141:92 142:92 143:92 144:93 145:94 146:95 147:96 148:97 149:98 150:98 151:98 152:99 153:99 154:100 155:100\n",
"INFO:tensorflow:token_is_max_context: 20:True 21:True 22:True 23:True 24:True 25:True 26:True 27:True 28:True 29:True 30:True 31:True 32:True 33:True 34:True 35:True 36:True 37:True 38:True 39:True 40:True 41:True 42:True 43:True 44:True 45:True 46:True 47:True 48:True 49:True 50:True 51:True 52:True 53:True 54:True 55:True 56:True 57:True 58:True 59:True 60:True 61:True 62:True 63:True 64:True 65:True 66:True 67:True 68:True 69:True 70:True 71:True 72:True 73:True 74:True 75:True 76:True 77:True 78:True 79:True 80:True 81:True 82:True 83:True 84:True 85:True 86:True 87:True 88:True 89:True 90:True 91:True 92:True 93:True 94:True 95:True 96:True 97:True 98:True 99:True 100:True 101:True 102:True 103:True 104:True 105:True 106:True 107:True 108:True 109:True 110:True 111:True 112:True 113:True 114:True 115:True 116:True 117:True 118:True 119:True 120:True 121:True 122:True 123:True 124:True 125:True 126:True 127:True 128:True 129:True 130:True 131:True 132:True 133:True 134:True 135:True 136:True 137:True 138:True 139:True 140:True 141:True 142:True 143:True 144:True 145:True 146:True 147:True 148:True 149:True 150:True 151:True 152:True 153:True 154:True 155:True\n",
"INFO:tensorflow:input_ids: 101 1996 2267 1997 2671 2211 2000 3749 2942 3330 5352 2927 2012 2054 2051 2012 10289 8214 1029 102 1996 2267 1997 3330 2001 2511 1999 4444 1010 2174 1010 2220 5352 1999 2942 1998 6228 3330 2020 1037 2112 1997 1996 2267 1997 2671 2144 1996 14896 1012 2651 1996 2267 1010 7431 1999 1996 26249 1010 12731 12227 1010 1998 2358 7076 2239 1011 2128 7712 2243 9873 1997 3330 1010 2950 2274 7640 1997 2817 1516 13395 1998 6228 3330 1010 5072 1998 16012 5302 2571 15431 3330 1010 2942 3330 1998 9843 4163 1010 3274 2671 1998 3330 1010 1998 5992 3330 1516 2007 2809 1038 1012 1055 1012 5445 3253 1012 5678 1010 1996 2267 4107 2274 1011 2095 7037 3014 3454 2007 1996 6667 1997 2840 1998 4144 1998 1997 2449 21467 3176 1038 1012 1037 1012 1998 3040 1997 2449 3447 1006 15038 1007 5445 1010 4414 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:start_position: 47\n",
"INFO:tensorflow:end_position: 48\n",
"INFO:tensorflow:answer: the 1870s\n"
]
}
],
"source": [
"bert_config = modeling_tensorflow.BertConfig.from_json_file(bert_config_file)\n",
"tokenizer = tokenization.BertTokenizer(\n",
" vocab_file=vocab_file, do_lower_case=True)\n",
"\n",
"eval_examples = read_squad_examples(\n",
" input_file=input_file, is_training=True, max_num=16)\n",
"\n",
"eval_features = convert_examples_to_features(\n",
" examples=eval_examples,\n",
" tokenizer=tokenizer,\n",
" max_seq_length=max_seq_length,\n",
" doc_stride=doc_stride,\n",
" max_query_length=max_query_length,\n",
" is_training=True)\n",
"\n",
"# You can use that to test the behavior of the models when target are outside of the model input sequence\n",
"# for feature in eval_features:\n",
"# feature.start_position = outside_pos\n",
"# feature.end_position = outside_pos"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:37.525632Z",
"start_time": "2018-11-06T10:11:37.498695Z"
}
},
"outputs": [],
"source": [
"eval_unique_id_to_feature = {}\n",
"for eval_feature in eval_features:\n",
" eval_unique_id_to_feature[eval_feature.unique_id] = eval_feature"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:37.558325Z",
"start_time": "2018-11-06T10:11:37.527972Z"
}
},
"outputs": [],
"source": [
"def input_fn_builder(features, seq_length, drop_remainder):\n",
" \"\"\"Creates an `input_fn` closure to be passed to TPUEstimator.\"\"\"\n",
"\n",
" all_unique_ids = []\n",
" all_input_ids = []\n",
" all_input_mask = []\n",
" all_segment_ids = []\n",
" all_start_positions = []\n",
" all_end_positions = []\n",
"\n",
" for feature in features:\n",
" all_unique_ids.append(feature.unique_id)\n",
" all_input_ids.append(feature.input_ids)\n",
" all_input_mask.append(feature.input_mask)\n",
" all_segment_ids.append(feature.segment_ids)\n",
" all_start_positions.append(feature.start_position)\n",
" all_end_positions.append(feature.end_position)\n",
"\n",
" def input_fn(params):\n",
" \"\"\"The actual input function.\"\"\"\n",
" batch_size = params[\"batch_size\"]\n",
"\n",
" num_examples = len(features)\n",
"\n",
" # This is for demo purposes and does NOT scale to large data sets. We do\n",
" # not use Dataset.from_generator() because that uses tf.py_func which is\n",
" # not TPU compatible. The right way to load data is with TFRecordReader.\n",
" feature_map = {\n",
" \"unique_ids\":\n",
" tf.constant(all_unique_ids, shape=[num_examples], dtype=tf.int32),\n",
" \"input_ids\":\n",
" tf.constant(\n",
" all_input_ids, shape=[num_examples, seq_length],\n",
" dtype=tf.int32),\n",
" \"input_mask\":\n",
" tf.constant(\n",
" all_input_mask,\n",
" shape=[num_examples, seq_length],\n",
" dtype=tf.int32),\n",
" \"segment_ids\":\n",
" tf.constant(\n",
" all_segment_ids,\n",
" shape=[num_examples, seq_length],\n",
" dtype=tf.int32),\n",
" \"start_positions\":\n",
" tf.constant(\n",
" all_start_positions,\n",
" shape=[num_examples],\n",
" dtype=tf.int32),\n",
" \"end_positions\":\n",
" tf.constant(\n",
" all_end_positions,\n",
" shape=[num_examples],\n",
" dtype=tf.int32),\n",
" }\n",
"\n",
" d = tf.data.Dataset.from_tensor_slices(feature_map)\n",
" d = d.repeat()\n",
" d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder)\n",
" return d\n",
"\n",
" return input_fn"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:37.601666Z",
"start_time": "2018-11-06T10:11:37.560082Z"
}
},
"outputs": [],
"source": [
"def model_fn_builder(bert_config, init_checkpoint, learning_rate,\n",
" num_train_steps, num_warmup_steps, use_tpu,\n",
" use_one_hot_embeddings):\n",
" \"\"\"Returns `model_fn` closure for TPUEstimator.\"\"\"\n",
"\n",
" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument\n",
" \"\"\"The `model_fn` for TPUEstimator.\"\"\"\n",
"\n",
" tf.logging.info(\"*** Features ***\")\n",
" for name in sorted(features.keys()):\n",
" tf.logging.info(\" name = %s, shape = %s\" % (name, features[name].shape))\n",
"\n",
" unique_ids = features[\"unique_ids\"]\n",
" input_ids = features[\"input_ids\"]\n",
" input_mask = features[\"input_mask\"]\n",
" segment_ids = features[\"segment_ids\"]\n",
"\n",
" is_training = (mode == tf.estimator.ModeKeys.TRAIN)\n",
"\n",
" (start_logits, end_logits) = create_model(\n",
" bert_config=bert_config,\n",
" is_training=is_training,\n",
" input_ids=input_ids,\n",
" input_mask=input_mask,\n",
" segment_ids=segment_ids,\n",
" use_one_hot_embeddings=use_one_hot_embeddings)\n",
"\n",
" tvars = tf.trainable_variables()\n",
"\n",
" initialized_variable_names = {}\n",
" scaffold_fn = None\n",
" if init_checkpoint:\n",
" (assignment_map,\n",
" initialized_variable_names) = modeling_tensorflow.get_assigment_map_from_checkpoint(\n",
" tvars, init_checkpoint)\n",
" if use_tpu:\n",
"\n",
" def tpu_scaffold():\n",
" tf.train.init_from_checkpoint(init_checkpoint, assignment_map)\n",
" return tf.train.Scaffold()\n",
"\n",
" scaffold_fn = tpu_scaffold\n",
" else:\n",
" tf.train.init_from_checkpoint(init_checkpoint, assignment_map)\n",
"\n",
" tf.logging.info(\"**** Trainable Variables ****\")\n",
" for var in tvars:\n",
" init_string = \"\"\n",
" if var.name in initialized_variable_names:\n",
" init_string = \", *INIT_FROM_CKPT*\"\n",
" tf.logging.info(\" name = %s, shape = %s%s\", var.name, var.shape,\n",
" init_string)\n",
"\n",
" output_spec = None\n",
" if mode == tf.estimator.ModeKeys.TRAIN:\n",
" seq_length = modeling_tensorflow.get_shape_list(input_ids)[1]\n",
"\n",
" def compute_loss(logits, positions):\n",
" one_hot_positions = tf.one_hot(\n",
" positions, depth=seq_length, dtype=tf.float32)\n",
" log_probs = tf.nn.log_softmax(logits, axis=-1)\n",
" loss = -tf.reduce_mean(\n",
" tf.reduce_sum(one_hot_positions * log_probs, axis=-1))\n",
" return loss\n",
"\n",
" start_positions = features[\"start_positions\"]\n",
" end_positions = features[\"end_positions\"]\n",
"\n",
" start_loss = compute_loss(start_logits, start_positions)\n",
" end_loss = compute_loss(end_logits, end_positions)\n",
"\n",
" total_loss = (start_loss + end_loss) / 2.0\n",
"\n",
" train_op = optimization.create_optimizer(\n",
" total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)\n",
"\n",
" output_spec = tf.contrib.tpu.TPUEstimatorSpec(\n",
" mode=mode,\n",
" loss=total_loss,\n",
" train_op=train_op,\n",
" scaffold_fn=scaffold_fn)\n",
" elif mode == tf.estimator.ModeKeys.PREDICT:\n",
" batch_size = modeling_tensorflow.get_shape_list(start_logits)[0]\n",
" seq_length = modeling_tensorflow.get_shape_list(input_ids)[1]\n",
"\n",
" def compute_loss(logits, positions):\n",
" one_hot_positions = tf.one_hot(\n",
" positions, depth=seq_length, dtype=tf.float32)\n",
" log_probs = tf.nn.log_softmax(logits, axis=-1)\n",
" loss = -tf.reduce_mean(\n",
" tf.reduce_sum(one_hot_positions * log_probs, axis=-1))\n",
" return loss\n",
"\n",
" start_positions = features[\"start_positions\"]\n",
" end_positions = features[\"end_positions\"]\n",
"\n",
" start_loss = compute_loss(start_logits, start_positions)\n",
" end_loss = compute_loss(end_logits, end_positions)\n",
"\n",
" total_loss = (start_loss + end_loss) / 2.0\n",
"\n",
" predictions = {\n",
" \"unique_ids\": unique_ids,\n",
" \"start_logits\": start_logits,\n",
" \"end_logits\": end_logits,\n",
" \"total_loss\": tf.reshape(total_loss, [batch_size, 1]),\n",
" \"start_loss\": tf.reshape(start_loss, [batch_size, 1]),\n",
" \"end_loss\": tf.reshape(end_loss, [batch_size, 1]),\n",
" }\n",
" output_spec = tf.contrib.tpu.TPUEstimatorSpec(\n",
" mode=mode, predictions=predictions, scaffold_fn=scaffold_fn)\n",
" else:\n",
" raise ValueError(\n",
" \"Only TRAIN and PREDICT modes are supported: %s\" % (mode))\n",
"\n",
" return output_spec\n",
"\n",
" return model_fn"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:41.104542Z",
"start_time": "2018-11-06T10:11:37.603474Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"WARNING:tensorflow:Estimator's model_fn (<function model_fn_builder.<locals>.model_fn at 0x120df3f28>) includes params argument, but params are not passed to Estimator.\n",
"INFO:tensorflow:Using config: {'_model_dir': '/tmp/squad_base/', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': 1000, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true\n",
"graph_options {\n",
" rewrite_options {\n",
" meta_optimizer_iterations: ONE\n",
" }\n",
"}\n",
", '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': None, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x11fd09630>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_tpu_config': TPUConfig(iterations_per_loop=1000, num_shards=8, num_cores_per_replica=None, per_host_input_for_training=3, tpu_job_name=None, initial_infeed_sleep_secs=None, input_partition_dims=None), '_cluster': None}\n",
"INFO:tensorflow:_TPUContext: eval_on_tpu True\n",
"WARNING:tensorflow:eval_on_tpu ignored because use_tpu is False.\n"
]
}
],
"source": [
"is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2\n",
"run_config = tf.contrib.tpu.RunConfig(\n",
" cluster=None,\n",
" master=None,\n",
" model_dir=output_dir,\n",
" save_checkpoints_steps=1000,\n",
" tpu_config=tf.contrib.tpu.TPUConfig(\n",
" iterations_per_loop=1000,\n",
" num_shards=8,\n",
" per_host_input_for_training=is_per_host))\n",
"\n",
"model_fn = model_fn_builder(\n",
" bert_config=bert_config,\n",
" init_checkpoint=init_checkpoint,\n",
" learning_rate=learning_rate,\n",
" num_train_steps=None,\n",
" num_warmup_steps=None,\n",
" use_tpu=False,\n",
" use_one_hot_embeddings=False)\n",
"\n",
"estimator = tf.contrib.tpu.TPUEstimator(\n",
" use_tpu=False,\n",
" model_fn=model_fn,\n",
" config=run_config,\n",
" train_batch_size=12,\n",
" predict_batch_size=1)\n",
"\n",
"predict_input_fn = input_fn_builder(\n",
" features=eval_features,\n",
" seq_length=max_seq_length,\n",
" drop_remainder=True)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:47.857601Z",
"start_time": "2018-11-06T10:11:41.106219Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:Could not find trained model in model_dir: /tmp/squad_base/, running initialization to predict.\n",
"INFO:tensorflow:Calling model_fn.\n",
"INFO:tensorflow:Running infer on CPU\n",
"INFO:tensorflow:*** Features ***\n",
"INFO:tensorflow: name = end_positions, shape = (1,)\n",
"INFO:tensorflow: name = input_ids, shape = (1, 384)\n",
"INFO:tensorflow: name = input_mask, shape = (1, 384)\n",
"INFO:tensorflow: name = segment_ids, shape = (1, 384)\n",
"INFO:tensorflow: name = start_positions, shape = (1,)\n",
"INFO:tensorflow: name = unique_ids, shape = (1,)\n",
"INFO:tensorflow:**** Trainable Variables ****\n",
"INFO:tensorflow: name = bert/embeddings/word_embeddings:0, shape = (30522, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/embeddings/token_type_embeddings:0, shape = (2, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/embeddings/position_embeddings:0, shape = (512, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/embeddings/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/embeddings/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_0/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_0/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_0/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_0/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_0/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_0/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_0/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_0/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_0/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_0/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_0/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_0/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_0/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_0/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_0/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_0/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_1/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_1/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_1/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_1/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_1/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_1/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_1/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_1/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_1/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_1/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_1/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_1/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_1/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_1/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_1/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_1/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_2/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_2/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_2/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_2/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_2/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_2/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_2/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_2/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_2/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_2/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_2/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_2/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_2/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_2/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_2/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_2/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_3/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_3/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_3/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_3/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_3/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_3/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_3/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_3/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_3/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_3/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_3/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_3/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_3/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_3/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_3/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_3/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_4/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow: name = bert/encoder/layer_4/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_4/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_4/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_4/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_4/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_4/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_4/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_4/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_4/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_4/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_4/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_4/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_4/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_4/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_4/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_5/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_5/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_5/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_5/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_5/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_5/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_5/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_5/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_5/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_5/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_5/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_5/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_5/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_5/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_5/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_5/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_6/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_6/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_6/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_6/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_6/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_6/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_6/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_6/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_6/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_6/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_6/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_6/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_6/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_6/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_6/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_6/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_7/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_7/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_7/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_7/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_7/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_7/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_7/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_7/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_7/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_7/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_7/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_7/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_7/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_7/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_7/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_7/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_8/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_8/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_8/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_8/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_8/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_8/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_8/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_8/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_8/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_8/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_8/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_8/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow: name = bert/encoder/layer_8/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_8/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_8/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_8/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_9/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_9/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_9/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_9/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_9/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_9/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_9/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_9/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_9/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_9/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_9/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_9/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_9/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_9/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_9/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_9/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_10/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_10/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_10/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_10/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_10/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_10/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_10/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_10/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_10/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_10/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_10/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_10/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_10/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_10/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_10/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_10/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_11/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_11/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_11/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_11/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_11/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_11/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_11/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_11/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_11/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_11/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_11/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_11/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_11/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_11/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_11/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/encoder/layer_11/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/pooler/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = bert/pooler/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*\n",
"INFO:tensorflow: name = cls/squad/output_weights:0, shape = (2, 768)\n",
"INFO:tensorflow: name = cls/squad/output_bias:0, shape = (2,)\n",
"INFO:tensorflow:Done calling model_fn.\n",
"INFO:tensorflow:Graph was finalized.\n",
"INFO:tensorflow:Running local_init_op.\n",
"INFO:tensorflow:Done running local_init_op.\n",
"INFO:tensorflow:prediction_loop marked as finished\n"
]
}
],
"source": [
"tensorflow_all_out = []\n",
"tensorflow_all_results = []\n",
"for result in estimator.predict(predict_input_fn, yield_single_examples=True):\n",
" unique_id = int(result[\"unique_ids\"])\n",
" eval_feature = eval_unique_id_to_feature[unique_id]\n",
" start_logits = result[\"start_logits\"]\n",
" end_logits = result[\"end_logits\"]\n",
" total_loss = result[\"total_loss\"]\n",
" start_loss = result[\"start_loss\"]\n",
" end_loss = result[\"end_loss\"]\n",
"\n",
" output_json = collections.OrderedDict()\n",
" output_json[\"linex_index\"] = unique_id\n",
" output_json[\"tokens\"] = [token for (i, token) in enumerate(eval_feature.tokens)]\n",
" output_json[\"start_logits\"] = [round(float(x), 6) for x in start_logits.flat]\n",
" output_json[\"end_logits\"] = [round(float(x), 6) for x in end_logits.flat]\n",
" output_json[\"total_loss\"] = [round(float(x), 6) for x in total_loss.flat]\n",
" output_json[\"start_loss\"] = [round(float(x), 6) for x in start_loss.flat]\n",
" output_json[\"end_loss\"] = [round(float(x), 6) for x in end_loss.flat]\n",
" tensorflow_all_out.append(output_json)\n",
" tensorflow_all_results.append(RawResult(\n",
" unique_id=unique_id,\n",
" start_logits=start_logits,\n",
" end_logits=end_logits))\n",
" break"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:47.912836Z",
"start_time": "2018-11-06T10:11:47.859679Z"
},
"code_folding": []
},
"outputs": [],
"source": [
"def _get_best_indexes(logits, n_best_size):\n",
" \"\"\"Get the n-best logits from a list.\"\"\"\n",
" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)\n",
"\n",
" best_indexes = []\n",
" for i in range(len(index_and_score)):\n",
" if i >= n_best_size:\n",
" break\n",
" best_indexes.append(index_and_score[i][0])\n",
" return best_indexes\n",
"\n",
"def _compute_softmax(scores):\n",
" \"\"\"Compute softmax probability over raw logits.\"\"\"\n",
" if not scores:\n",
" return []\n",
"\n",
" max_score = None\n",
" for score in scores:\n",
" if max_score is None or score > max_score:\n",
" max_score = score\n",
"\n",
" exp_scores = []\n",
" total_sum = 0.0\n",
" for score in scores:\n",
" x = math.exp(score - max_score)\n",
" exp_scores.append(x)\n",
" total_sum += x\n",
"\n",
" probs = []\n",
" for score in exp_scores:\n",
" probs.append(score / total_sum)\n",
" return probs\n",
"\n",
"\n",
"def compute_predictions(all_examples, all_features, all_results, n_best_size,\n",
" max_answer_length, do_lower_case):\n",
" \"\"\"Compute final predictions.\"\"\"\n",
" example_index_to_features = collections.defaultdict(list)\n",
" for feature in all_features:\n",
" example_index_to_features[feature.example_index].append(feature)\n",
"\n",
" unique_id_to_result = {}\n",
" for result in all_results:\n",
" unique_id_to_result[result.unique_id] = result\n",
"\n",
" _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name\n",
" \"PrelimPrediction\",\n",
" [\"feature_index\", \"start_index\", \"end_index\", \"start_logit\", \"end_logit\"])\n",
"\n",
" all_predictions = collections.OrderedDict()\n",
" all_nbest_json = collections.OrderedDict()\n",
" for (example_index, example) in enumerate(all_examples):\n",
" features = example_index_to_features[example_index]\n",
"\n",
" prelim_predictions = []\n",
" for (feature_index, feature) in enumerate(features):\n",
" result = unique_id_to_result[feature.unique_id]\n",
"\n",
" start_indexes = _get_best_indexes(result.start_logits, n_best_size)\n",
" end_indexes = _get_best_indexes(result.end_logits, n_best_size)\n",
" for start_index in start_indexes:\n",
" for end_index in end_indexes:\n",
" # We could hypothetically create invalid predictions, e.g., predict\n",
" # that the start of the span is in the question. We throw out all\n",
" # invalid predictions.\n",
" if start_index >= len(feature.tokens):\n",
" continue\n",
" if end_index >= len(feature.tokens):\n",
" continue\n",
" if start_index not in feature.token_to_orig_map:\n",
" continue\n",
" if end_index not in feature.token_to_orig_map:\n",
" continue\n",
" if not feature.token_is_max_context.get(start_index, False):\n",
" continue\n",
" if end_index < start_index:\n",
" continue\n",
" length = end_index - start_index + 1\n",
" if length > max_answer_length:\n",
" continue\n",
" prelim_predictions.append(\n",
" _PrelimPrediction(\n",
" feature_index=feature_index,\n",
" start_index=start_index,\n",
" end_index=end_index,\n",
" start_logit=result.start_logits[start_index],\n",
" end_logit=result.end_logits[end_index]))\n",
"\n",
" prelim_predictions = sorted(\n",
" prelim_predictions,\n",
" key=lambda x: (x.start_logit + x.end_logit),\n",
" reverse=True)\n",
"\n",
" _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name\n",
" \"NbestPrediction\", [\"text\", \"start_logit\", \"end_logit\"])\n",
"\n",
" seen_predictions = {}\n",
" nbest = []\n",
" for pred in prelim_predictions:\n",
" if len(nbest) >= n_best_size:\n",
" break\n",
" feature = features[pred.feature_index]\n",
"\n",
" tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]\n",
" orig_doc_start = feature.token_to_orig_map[pred.start_index]\n",
" orig_doc_end = feature.token_to_orig_map[pred.end_index]\n",
" orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]\n",
" tok_text = \" \".join(tok_tokens)\n",
"\n",
" # De-tokenize WordPieces that have been split off.\n",
" tok_text = tok_text.replace(\" ##\", \"\")\n",
" tok_text = tok_text.replace(\"##\", \"\")\n",
"\n",
" # Clean whitespace\n",
" tok_text = tok_text.strip()\n",
" tok_text = \" \".join(tok_text.split())\n",
" orig_text = \" \".join(orig_tokens)\n",
"\n",
" final_text = get_final_text(tok_text, orig_text, do_lower_case)\n",
" if final_text in seen_predictions:\n",
" continue\n",
"\n",
" seen_predictions[final_text] = True\n",
" nbest.append(\n",
" _NbestPrediction(\n",
" text=final_text,\n",
" start_logit=pred.start_logit,\n",
" end_logit=pred.end_logit))\n",
"\n",
" # In very rare edge cases we could have no valid predictions. So we\n",
" # just create a nonce prediction in this case to avoid failure.\n",
" if not nbest:\n",
" nbest.append(\n",
" _NbestPrediction(text=\"empty\", start_logit=0.0, end_logit=0.0))\n",
"\n",
" assert len(nbest) >= 1\n",
"\n",
" total_scores = []\n",
" for entry in nbest:\n",
" total_scores.append(entry.start_logit + entry.end_logit)\n",
"\n",
" probs = _compute_softmax(total_scores)\n",
"\n",
" nbest_json = []\n",
" for (i, entry) in enumerate(nbest):\n",
" output = collections.OrderedDict()\n",
" output[\"text\"] = entry.text\n",
" output[\"probability\"] = probs[i]\n",
" output[\"start_logit\"] = entry.start_logit\n",
" output[\"end_logit\"] = entry.end_logit\n",
" nbest_json.append(output)\n",
"\n",
" assert len(nbest_json) >= 1\n",
"\n",
" all_predictions[example.qas_id] = nbest_json[0][\"text\"]\n",
" all_nbest_json[example.qas_id] = nbest_json\n",
"\n",
" return all_predictions, all_nbest_json"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:47.953205Z",
"start_time": "2018-11-06T10:11:47.914751Z"
}
},
"outputs": [],
"source": [
"all_predictions, all_nbest_json = compute_predictions(eval_examples[:1], eval_features[:1], tensorflow_all_results, 20, max_answer_length, True)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:47.994647Z",
"start_time": "2018-11-06T10:11:47.955015Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"OrderedDict([('5733be284776f41900661182',\n",
" [OrderedDict([('text', 'empty'),\n",
" ('probability', 1.0),\n",
" ('start_logit', 0.0),\n",
" ('end_logit', 0.0)])])])"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"all_nbest_json"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:48.028473Z",
"start_time": "2018-11-06T10:11:47.996311Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1\n",
"7\n",
"odict_keys(['linex_index', 'tokens', 'start_logits', 'end_logits', 'total_loss', 'start_loss', 'end_loss'])\n",
"number of tokens 176\n",
"number of start_logits 384\n",
"shape of end_logits 384\n"
]
}
],
"source": [
"print(len(tensorflow_all_out))\n",
"print(len(tensorflow_all_out[0]))\n",
"print(tensorflow_all_out[0].keys())\n",
"print(\"number of tokens\", len(tensorflow_all_out[0]['tokens']))\n",
"print(\"number of start_logits\", len(tensorflow_all_out[0]['start_logits']))\n",
"print(\"shape of end_logits\", len(tensorflow_all_out[0]['end_logits']))"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:48.060658Z",
"start_time": "2018-11-06T10:11:48.030289Z"
}
},
"outputs": [],
"source": [
"tensorflow_outputs = [tensorflow_all_out[0]['start_logits'], tensorflow_all_out[0]['end_logits'],\n",
" tensorflow_all_out[0]['total_loss'], tensorflow_all_out[0]['start_loss'],\n",
" tensorflow_all_out[0]['end_loss']]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2/ PyTorch code"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:48.478814Z",
"start_time": "2018-11-06T10:11:48.062585Z"
}
},
"outputs": [],
"source": [
"import modeling\n",
"from run_squad import *"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:48.512607Z",
"start_time": "2018-11-06T10:11:48.480729Z"
}
},
"outputs": [],
"source": [
"init_checkpoint_pt = \"../google_models/uncased_L-12_H-768_A-12/pytorch_model.bin\""
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:51.023405Z",
"start_time": "2018-11-06T10:11:48.514306Z"
},
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"tensor([0., 0.])"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"device = torch.device(\"cpu\")\n",
"model = modeling.BertForQuestionAnswering(bert_config)\n",
"model.bert.load_state_dict(torch.load(init_checkpoint_pt, map_location='cpu'))\n",
"model.to(device)\n",
"model.qa_outputs.weight.data.fill_(1.0)\n",
"model.qa_outputs.bias.data.zero_()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:51.079364Z",
"start_time": "2018-11-06T10:11:51.028228Z"
},
"code_folding": []
},
"outputs": [],
"source": [
"all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)\n",
"all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)\n",
"all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)\n",
"all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)\n",
"all_start_positions = torch.tensor([[f.start_position] for f in eval_features], dtype=torch.long)\n",
"all_end_positions = torch.tensor([[f.end_position] for f in eval_features], dtype=torch.long)\n",
"\n",
"eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,\n",
" all_start_positions, all_end_positions, all_example_index)\n",
"eval_sampler = SequentialSampler(eval_data)\n",
"eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=1)\n",
"\n",
"model.eval()\n",
"None"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:51.114686Z",
"start_time": "2018-11-06T10:11:51.081474Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[torch.Size([1, 384]), torch.Size([1, 384]), torch.Size([1, 384]), torch.Size([1, 1]), torch.Size([1, 1]), torch.Size([1])]\n"
]
},
{
"data": {
"text/plain": [
"torch.Size([1, 1])"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"batch = iter(eval_dataloader).next()\n",
"input_ids, input_mask, segment_ids, start_positions, end_positions, example_index = batch\n",
"print([t.shape for t in batch])\n",
"start_positions.size()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:52.298367Z",
"start_time": "2018-11-06T10:11:51.116219Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Evaluating: 0%| | 0/270 [00:00<?, ?it/s]\n"
]
}
],
"source": [
"pytorch_all_out = []\n",
"for batch in tqdm(eval_dataloader, desc=\"Evaluating\"):\n",
" input_ids, input_mask, segment_ids, start_positions, end_positions, example_index = batch\n",
" input_ids = input_ids.to(device)\n",
" input_mask = input_mask.to(device)\n",
" segment_ids = segment_ids.to(device)\n",
" start_positions = start_positions.to(device)\n",
" end_positions = end_positions.to(device)\n",
"\n",
" total_loss, (start_logits, end_logits) = model(input_ids, segment_ids, input_mask, start_positions, end_positions)\n",
" \n",
" eval_feature = eval_features[example_index.item()]\n",
"\n",
" output_json = collections.OrderedDict()\n",
" output_json[\"linex_index\"] = unique_id\n",
" output_json[\"tokens\"] = [token for (i, token) in enumerate(eval_feature.tokens)]\n",
" output_json[\"total_loss\"] = total_loss.detach().cpu().numpy()\n",
" output_json[\"start_logits\"] = start_logits.detach().cpu().numpy()\n",
" output_json[\"end_logits\"] = end_logits.detach().cpu().numpy()\n",
" pytorch_all_out.append(output_json)\n",
" break"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:52.339553Z",
"start_time": "2018-11-06T10:11:52.300335Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1\n",
"5\n",
"odict_keys(['linex_index', 'tokens', 'total_loss', 'start_logits', 'end_logits'])\n",
"number of tokens 176\n",
"number of start_logits 1\n",
"number of end_logits 1\n"
]
}
],
"source": [
"print(len(pytorch_all_out))\n",
"print(len(pytorch_all_out[0]))\n",
"print(pytorch_all_out[0].keys())\n",
"print(\"number of tokens\", len(pytorch_all_out[0]['tokens']))\n",
"print(\"number of start_logits\", len(pytorch_all_out[0]['start_logits']))\n",
"print(\"number of end_logits\", len(pytorch_all_out[0]['end_logits']))"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:52.372827Z",
"start_time": "2018-11-06T10:11:52.341393Z"
}
},
"outputs": [],
"source": [
"pytorch_outputs = [pytorch_all_out[0]['start_logits'], pytorch_all_out[0]['end_logits'], pytorch_all_out[0]['total_loss']]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3/ Comparing the standard deviation of start_logits, end_logits and loss of both models"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:52.402814Z",
"start_time": "2018-11-06T10:11:52.374329Z"
}
},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:11:52.434743Z",
"start_time": "2018-11-06T10:11:52.404345Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"shape tensorflow layer, shape pytorch layer, standard deviation\n",
"((384,), (1, 384), 5.244962470555037e-06)\n",
"((384,), (1, 384), 5.244962470555037e-06)\n",
"((1,), (), 4.560241698925438e-06)\n"
]
}
],
"source": [
"print('shape tensorflow layer, shape pytorch layer, standard deviation')\n",
"print('\\n'.join(list(str((np.array(tensorflow_outputs[i]).shape,\n",
" np.array(pytorch_outputs[i]).shape, \n",
" np.sqrt(np.mean((np.array(tensorflow_outputs[i]) - np.array(pytorch_outputs[i]))**2.0)))) for i in range(3))))"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-06T10:12:54.200059Z",
"start_time": "2018-11-06T10:12:54.167355Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total loss of the TF model 9.06024 - Total loss of the PT model 9.0602445602417\n"
]
}
],
"source": [
"print(\"Total loss of the TF model {} - Total loss of the PT model {}\".format(tensorflow_outputs[2][0], pytorch_outputs[2]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"hide_input": false,
"kernelspec": {
"display_name": "Python [default]",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"toc": {
"colors": {
"hover_highlight": "#DAA520",
"running_highlight": "#FF0000",
"selected_highlight": "#FFD700"
},
"moveMenuLeft": true,
"nav_menu": {
"height": "48px",
"width": "252px"
},
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 4,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|