Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 13,583 Bytes
63858e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
# Quickstart
## Philosophy
Transformers is an opinionated library built for NLP researchers seeking to use/study/extend large-scale transformers models.
The library was designed with two strong goals in mind:
- be as easy and fast to use as possible:
- we strongly limited the number of user-facing abstractions to learn, in fact there are almost no abstractions, just three standard classes required to use each model: configuration, models and tokenizer,
- all of these classes can be initialized in a simple and unified way from pretrained instances by using a common `from_pretrained()` instantiation method which will take care of downloading (if needed), caching and loading the related class from a pretrained instance supplied in the library or your own saved instance.
- as a consequence, this library is NOT a modular toolbox of building blocks for neural nets. If you want to extend/build-upon the library, just use regular Python/PyTorch modules and inherit from the base classes of the library to reuse functionalities like model loading/saving.
- provide state-of-the-art models with performances as close as possible to the original models:
- we provide at least one example for each architecture which reproduces a result provided by the official authors of said architecture,
- the code is usually as close to the original code base as possible which means some PyTorch code may be not as *pytorchic* as it could be as a result of being converted TensorFlow code.
A few other goals:
- expose the models' internals as consistently as possible:
- we give access, using a single API to the full hidden-states and attention weights,
- tokenizer and base model's API are standardized to easily switch between models.
- incorporate a subjective selection of promising tools for fine-tuning/investigating these models:
- a simple/consistent way to add new tokens to the vocabulary and embeddings for fine-tuning,
- simple ways to mask and prune transformer heads.
## Main concepts
The library is build around three type of classes for each models:
- **model classes** which are PyTorch models (`torch.nn.Modules`) of the 8 models architectures currently provided in the library, e.g. `BertModel`
- **configuration classes** which store all the parameters required to build a model, e.g. `BertConfig`. You don't always need to instantiate these your-self, in particular if you are using a pretrained model without any modification, creating the model will automatically take care of instantiating the configuration (which is part of the model)
- **tokenizer classes** which store the vocabulary for each model and provide methods for encoding/decoding strings in list of token embeddings indices to be fed to a model, e.g. `BertTokenizer`
All these classes can be instantiated from pretrained instances and saved locally using two methods:
- `from_pretrained()` let you instantiate a model/configuration/tokenizer from a pretrained version either provided by the library itself (currently 27 models are provided as listed [here](https://huggingface.co/transformers/pretrained_models.html)) or stored locally (or on a server) by the user,
- `save_pretrained()` let you save a model/configuration/tokenizer locally so that it can be reloaded using `from_pretrained()`.
We'll finish this quickstart tour by going through a few simple quick-start examples to see how we can instantiate and use these classes. The rest of the documentation is organized in two parts:
- the **MAIN CLASSES** section details the common functionalities/method/attributes of the three main type of classes (configuration, model, tokenizer) plus some optimization related classes provided as utilities for training,
- the **PACKAGE REFERENCE** section details all the variants of each class for each model architectures and in particular the input/output that you should expect when calling each of them.
## Quick tour: Usage
Here are two examples showcasing a few `Bert` and `GPT2` classes and pre-trained models.
See full API reference for examples for each model class.
### BERT example
Let's start by preparing a tokenized input (a list of token embeddings indices to be fed to Bert) from a text string using `BertTokenizer`
```python
import torch
from transformers import BertTokenizer, BertModel, BertForMaskedLM
# OPTIONAL: if you want to have more information on what's happening under the hood, activate the logger as follows
import logging
logging.basicConfig(level=logging.INFO)
# Load pre-trained model tokenizer (vocabulary)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# Tokenize input
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
tokenized_text = tokenizer.tokenize(text)
# Mask a token that we will try to predict back with `BertForMaskedLM`
masked_index = 8
tokenized_text[masked_index] = '[MASK]'
assert tokenized_text == ['[CLS]', 'who', 'was', 'jim', 'henson', '?', '[SEP]', 'jim', '[MASK]', 'was', 'a', 'puppet', '##eer', '[SEP]']
# Convert token to vocabulary indices
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
# Define sentence A and B indices associated to 1st and 2nd sentences (see paper)
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
# Convert inputs to PyTorch tensors
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
```
Let's see how we can use `BertModel` to encode our inputs in hidden-states:
```python
# Load pre-trained model (weights)
model = BertModel.from_pretrained('bert-base-uncased')
# Set the model in evaluation mode to deactivate the DropOut modules
# This is IMPORTANT to have reproducible results during evaluation!
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
segments_tensors = segments_tensors.to('cuda')
model.to('cuda')
# Predict hidden states features for each layer
with torch.no_grad():
# See the models docstrings for the detail of the inputs
outputs = model(tokens_tensor, token_type_ids=segments_tensors)
# Transformers models always output tuples.
# See the models docstrings for the detail of all the outputs
# In our case, the first element is the hidden state of the last layer of the Bert model
encoded_layers = outputs[0]
# We have encoded our input sequence in a FloatTensor of shape (batch size, sequence length, model hidden dimension)
assert tuple(encoded_layers.shape) == (1, len(indexed_tokens), model.config.hidden_size)
```
And how to use `BertForMaskedLM` to predict a masked token:
```python
# Load pre-trained model (weights)
model = BertForMaskedLM.from_pretrained('bert-base-uncased')
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
segments_tensors = segments_tensors.to('cuda')
model.to('cuda')
# Predict all tokens
with torch.no_grad():
outputs = model(tokens_tensor, token_type_ids=segments_tensors)
predictions = outputs[0]
# confirm we were able to predict 'henson'
predicted_index = torch.argmax(predictions[0, masked_index]).item()
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
assert predicted_token == 'henson'
```
### OpenAI GPT-2
Here is a quick-start example using `GPT2Tokenizer` and `GPT2LMHeadModel` class with OpenAI's pre-trained model to predict the next token from a text prompt.
First let's prepare a tokenized input from our text string using `GPT2Tokenizer`
```python
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
# OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
import logging
logging.basicConfig(level=logging.INFO)
# Load pre-trained model tokenizer (vocabulary)
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
# Encode a text inputs
text = "Who was Jim Henson ? Jim Henson was a"
indexed_tokens = tokenizer.encode(text)
# Convert indexed tokens in a PyTorch tensor
tokens_tensor = torch.tensor([indexed_tokens])
```
Let's see how to use `GPT2LMHeadModel` to generate the next token following our text:
```python
# Load pre-trained model (weights)
model = GPT2LMHeadModel.from_pretrained('gpt2')
# Set the model in evaluation mode to deactivate the DropOut modules
# This is IMPORTANT to have reproducible results during evaluation!
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
model.to('cuda')
# Predict all tokens
with torch.no_grad():
outputs = model(tokens_tensor)
predictions = outputs[0]
# get the predicted next sub-word (in our case, the word 'man')
predicted_index = torch.argmax(predictions[0, -1, :]).item()
predicted_text = tokenizer.decode(indexed_tokens + [predicted_index])
assert predicted_text == 'Who was Jim Henson? Jim Henson was a man'
```
Examples for each model class of each model architecture (Bert, GPT, GPT-2, Transformer-XL, XLNet and XLM) can be found in the [documentation](#documentation).
#### Using the past
GPT-2 as well as some other models (GPT, XLNet, Transfo-XL, CTRL) make use of a `past` or `mems` attribute which can be used to prevent re-computing the key/value pairs when using sequential decoding. It is useful when generating sequences as a big part of the attention mechanism benefits from previous computations.
Here is a fully-working example using the `past` with `GPT2LMHeadModel` and argmax decoding (which should only be used as an example, as argmax decoding introduces a lot of repetition):
```python
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained('gpt2')
generated = tokenizer.encode("The Manhattan bridge")
context = torch.tensor([generated])
past = None
for i in range(100):
print(i)
output, past = model(context, past=past)
token = torch.argmax(output[0, :])
generated += [token.tolist()]
context = token.unsqueeze(0)
sequence = tokenizer.decode(generated)
print(sequence)
```
The model only requires a single token as input as all the previous tokens' key/value pairs are contained in the `past`.
### Model2Model example
Encoder-decoder architectures require two tokenized inputs: one for the encoder and the other one for the decoder. Let's assume that we want to use `Model2Model` for generative question answering, and start by tokenizing the question and answer that will be fed to the model.
```python
import torch
from transformers import BertTokenizer, Model2Model
# OPTIONAL: if you want to have more information on what's happening under the hood, activate the logger as follows
import logging
logging.basicConfig(level=logging.INFO)
# Load pre-trained model tokenizer (vocabulary)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# Encode the input to the encoder (the question)
question = "Who was Jim Henson?"
encoded_question = tokenizer.encode(question)
# Encode the input to the decoder (the answer)
answer = "Jim Henson was a puppeteer"
encoded_answer = tokenizer.encode(answer)
# Convert inputs to PyTorch tensors
question_tensor = torch.tensor([encoded_question])
answer_tensor = torch.tensor([encoded_answer])
```
Let's see how we can use `Model2Model` to get the value of the loss associated with this (question, answer) pair:
```python
# In order to compute the loss we need to provide language model
# labels (the token ids that the model should have produced) to
# the decoder.
lm_labels = encoded_answer
labels_tensor = torch.tensor([lm_labels])
# Load pre-trained model (weights)
model = Model2Model.from_pretrained('bert-base-uncased')
# Set the model in evaluation mode to deactivate the DropOut modules
# This is IMPORTANT to have reproducible results during evaluation!
model.eval()
# If you have a GPU, put everything on cuda
question_tensor = question_tensor.to('cuda')
answer_tensor = answer_tensor.to('cuda')
labels_tensor = labels_tensor.to('cuda')
model.to('cuda')
# Predict hidden states features for each layer
with torch.no_grad():
# See the models docstrings for the detail of the inputs
outputs = model(question_tensor, answer_tensor, decoder_lm_labels=labels_tensor)
# Transformers models always output tuples.
# See the models docstrings for the detail of all the outputs
# In our case, the first element is the value of the LM loss
lm_loss = outputs[0]
```
This loss can be used to fine-tune `Model2Model` on the question answering task. Assuming that we fine-tuned the model, let us now see how to generate an answer:
```python
# Let's re-use the previous question
question = "Who was Jim Henson?"
encoded_question = tokenizer.encode(question)
question_tensor = torch.tensor([encoded_question])
# This time we try to generate the answer, so we start with an empty sequence
answer = "[CLS]"
encoded_answer = tokenizer.encode(answer, add_special_tokens=False)
answer_tensor = torch.tensor([encoded_answer])
# Load pre-trained model (weights)
model = Model2Model.from_pretrained('fine-tuned-weights')
model.eval()
# If you have a GPU, put everything on cuda
question_tensor = encoded_question.to('cuda')
answer_tensor = encoded_answer.to('cuda')
model.to('cuda')
# Predict all tokens
with torch.no_grad():
outputs = model(question_tensor, answer_tensor)
predictions = outputs[0]
# confirm we were able to predict 'jim'
predicted_index = torch.argmax(predictions[0, -1]).item()
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
assert predicted_token == 'jim'
```
|