Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 4,813 Bytes
63858e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import { MainGraphic } from './vis/myMain'
import { API, emptyTokenDisplay } from './api/mainApi'
import * as _ from 'lodash'
import { TokenWrapper } from './data/TokenWrapper'
// import { Tester } from "../ts/test"
import "!file-loader?name=exBERT.html!../exBERT.html";
import "!file-loader?name=index.html!../index.html";
import "../css/main.scss"
function doMySvg() {
return new MainGraphic()
};
/**
* Create the static files needed for the demo. Save the keys and file paths to a json object that is then written to a file
*
* This will print the object after every call. When the key length is the expected length, right click in chrome and select "save as global variable"
*
* Then, in the console, type "copy(temp1)". Use sublime text (it is the best for handling large files) to paste this into the code and save it as ____.json
*
* @param sentence - The sentence to analyze
* @param maskInd - Which index to mask in the sentence. Atm, can only record one masking
* @param outDictPath - Where to save the object of hashkey: filepath
*/
function createDemos(sentence, maskInd: number, modelName: string, corpusName: string, outDictPath) {
const api = new API()
const layers = _.range(12)
const L = 0
const contentHash = {} // Map hash -> contents
// Get the base return for all page initializations
_.range(12).forEach(L => {
api.getMetaAttentions(modelName, sentence, L, contentHash).then(r0 => {
const tokCapsule = new TokenWrapper(r0.payload);
// Unmasked response:
api.updateMaskedAttentions(modelName, tokCapsule.a, sentence, L, contentHash).then(r1 => {
// Masked word and searching responses:
tokCapsule.a.mask(maskInd)
api.updateMaskedAttentions(modelName, tokCapsule.a, sentence, L, contentHash).then(r2 => {
// Get search results by embedding
const embedding = r2['aa']['left'][maskInd].embeddings
api.getNearestEmbeddings(modelName, corpusName, embedding, L, _.range(12), 50, contentHash).then(x => {
})
// Get search results by context
const context = r2['aa']['left'][maskInd].contexts
api.getNearestContexts(modelName, corpusName, context, L, _.range(12), 50, contentHash).then(x => {
console.log(Object.keys(contentHash).length);
console.log(contentHash);
})
})
})
})
})
}
/**
*
* Observe how the demo creation process works.
*
* If desired to mask multiple words in the input for demo purposes, try looping over the mask inds and masking each one individually
*
* @param sentence The demo sentence
* @param maskInd Desired index to mask (can currently only accept a single mask index)
* @param outDictPath
*/
function inspectDemos(sentence, maskInd: number, modelName: string, corpusName: string, outDictPath) {
const api = new API()
const contentHash = {}
// Get the base return for all page initializations
_.range(1).forEach(L => {
api.getMetaAttentions(modelName, sentence, L, "").then(r0 => {
const tokCapsule = new TokenWrapper(r0.payload);
// Unmasked response:
api.updateMaskedAttentions(modelName, tokCapsule.a, sentence, L, emptyTokenDisplay).then(r1 => {
// Masked word and searching responses:
tokCapsule.a.mask(maskInd)
api.updateMaskedAttentions(modelName, tokCapsule.a, sentence, L, emptyTokenDisplay).then(r2 => {
console.log(r2);
// Get search results by embedding
const embedding = r2['aa']['left'][maskInd].embeddings
api.getNearestEmbeddings(modelName, corpusName, embedding, L, _.range(12), 50, contentHash).then(x => {
})
// Get search results by context
const context = r2['aa']['left'][maskInd].contexts
api.getNearestContexts(modelName, corpusName, context, L, _.range(12), 50).then(x => {
})
})
})
})
})
}
function replTest() {
// Tester.testAttWrapperConstructor()
// Tester.testUpdateMaskedAttention()
// Tester.testNjAray();
// Tester.testRandomArrayCreation();
// Tester.testFaissWrapper();
// Tester.testD3Ordinal();
// Tester.testFaissSearchResultsHist();
// Tester.testReadingJSON();
}
window.onload = () => {
doMySvg();
// replTest();
// createDemos("Chicken tastes absolutely delicious if you know what you're doing", 4, "")
console.log("Done loading window");
}
|