File size: 2,774 Bytes
75466df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
import unittest

from transformers import is_torch_available

from .test_tokenization_common import TokenizerTesterMixin
from .utils import require_torch


if is_torch_available():
    from transformers.tokenization_transfo_xl import TransfoXLTokenizer, VOCAB_FILES_NAMES


@require_torch
class TransfoXLTokenizationTest(TokenizerTesterMixin, unittest.TestCase):

    tokenizer_class = TransfoXLTokenizer if is_torch_available() else None

    def setUp(self):
        super().setUp()

        vocab_tokens = [
            "<unk>",
            "[CLS]",
            "[SEP]",
            "want",
            "unwanted",
            "wa",
            "un",
            "running",
            ",",
            "low",
            "l",
        ]
        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

    def get_tokenizer(self, **kwargs):
        kwargs["lower_case"] = True
        return TransfoXLTokenizer.from_pretrained(self.tmpdirname, **kwargs)

    def get_input_output_texts(self):
        input_text = "<unk> UNwanted , running"
        output_text = "<unk> unwanted, running"
        return input_text, output_text

    def test_full_tokenizer(self):
        tokenizer = TransfoXLTokenizer(vocab_file=self.vocab_file, lower_case=True)

        tokens = tokenizer.tokenize("<unk> UNwanted , running")
        self.assertListEqual(tokens, ["<unk>", "unwanted", ",", "running"])

        self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [0, 4, 8, 7])

    def test_full_tokenizer_lower(self):
        tokenizer = TransfoXLTokenizer(lower_case=True)

        self.assertListEqual(
            tokenizer.tokenize(" \tHeLLo ! how  \n Are yoU ?  "), ["hello", "!", "how", "are", "you", "?"]
        )

    def test_full_tokenizer_no_lower(self):
        tokenizer = TransfoXLTokenizer(lower_case=False)

        self.assertListEqual(
            tokenizer.tokenize(" \tHeLLo ! how  \n Are yoU ?  "), ["HeLLo", "!", "how", "Are", "yoU", "?"]
        )