Spaces:
				
			
			
	
			
			
					
		Running
		
			on 
			
			CPU Upgrade
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
			on 
			
			CPU Upgrade
	File size: 2,774 Bytes
			
			| 75466df | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | # coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from transformers import is_torch_available
from .test_tokenization_common import TokenizerTesterMixin
from .utils import require_torch
if is_torch_available():
    from transformers.tokenization_transfo_xl import TransfoXLTokenizer, VOCAB_FILES_NAMES
@require_torch
class TransfoXLTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = TransfoXLTokenizer if is_torch_available() else None
    def setUp(self):
        super().setUp()
        vocab_tokens = [
            "<unk>",
            "[CLS]",
            "[SEP]",
            "want",
            "unwanted",
            "wa",
            "un",
            "running",
            ",",
            "low",
            "l",
        ]
        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
    def get_tokenizer(self, **kwargs):
        kwargs["lower_case"] = True
        return TransfoXLTokenizer.from_pretrained(self.tmpdirname, **kwargs)
    def get_input_output_texts(self):
        input_text = "<unk> UNwanted , running"
        output_text = "<unk> unwanted, running"
        return input_text, output_text
    def test_full_tokenizer(self):
        tokenizer = TransfoXLTokenizer(vocab_file=self.vocab_file, lower_case=True)
        tokens = tokenizer.tokenize("<unk> UNwanted , running")
        self.assertListEqual(tokens, ["<unk>", "unwanted", ",", "running"])
        self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [0, 4, 8, 7])
    def test_full_tokenizer_lower(self):
        tokenizer = TransfoXLTokenizer(lower_case=True)
        self.assertListEqual(
            tokenizer.tokenize(" \tHeLLo ! how  \n Are yoU ?  "), ["hello", "!", "how", "are", "you", "?"]
        )
    def test_full_tokenizer_no_lower(self):
        tokenizer = TransfoXLTokenizer(lower_case=False)
        self.assertListEqual(
            tokenizer.tokenize(" \tHeLLo ! how  \n Are yoU ?  "), ["HeLLo", "!", "how", "Are", "yoU", "?"]
        )
 | 
