Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 22,095 Bytes
75466df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pickle
import shutil
import tempfile
class TokenizerTesterMixin:
tokenizer_class = None
test_rust_tokenizer = False
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def get_tokenizer(self, **kwargs):
raise NotImplementedError
def get_rust_tokenizer(self, **kwargs):
raise NotImplementedError
def get_input_output_texts(self):
raise NotImplementedError
def test_tokenizers_common_properties(self):
tokenizer = self.get_tokenizer()
attributes_list = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
for attr in attributes_list:
self.assertTrue(hasattr(tokenizer, attr))
self.assertTrue(hasattr(tokenizer, attr + "_id"))
self.assertTrue(hasattr(tokenizer, "additional_special_tokens"))
self.assertTrue(hasattr(tokenizer, "additional_special_tokens_ids"))
attributes_list = ["max_len", "init_inputs", "init_kwargs", "added_tokens_encoder", "added_tokens_decoder"]
for attr in attributes_list:
self.assertTrue(hasattr(tokenizer, attr))
def test_save_and_load_tokenizer(self):
# safety check on max_len default value so we are sure the test works
tokenizer = self.get_tokenizer()
self.assertNotEqual(tokenizer.max_len, 42)
# Now let's start the test
tokenizer = self.get_tokenizer(max_len=42)
before_tokens = tokenizer.encode("He is very happy, UNwant\u00E9d,running", add_special_tokens=False)
with tempfile.TemporaryDirectory() as tmpdirname:
tokenizer.save_pretrained(tmpdirname)
tokenizer = self.tokenizer_class.from_pretrained(tmpdirname)
after_tokens = tokenizer.encode("He is very happy, UNwant\u00E9d,running", add_special_tokens=False)
self.assertListEqual(before_tokens, after_tokens)
self.assertEqual(tokenizer.max_len, 42)
tokenizer = self.tokenizer_class.from_pretrained(tmpdirname, max_len=43)
self.assertEqual(tokenizer.max_len, 43)
def test_pickle_tokenizer(self):
tokenizer = self.get_tokenizer()
self.assertIsNotNone(tokenizer)
text = "Munich and Berlin are nice cities"
subwords = tokenizer.tokenize(text)
with tempfile.TemporaryDirectory() as tmpdirname:
filename = os.path.join(tmpdirname, "tokenizer.bin")
with open(filename, "wb") as handle:
pickle.dump(tokenizer, handle)
with open(filename, "rb") as handle:
tokenizer_new = pickle.load(handle)
subwords_loaded = tokenizer_new.tokenize(text)
self.assertListEqual(subwords, subwords_loaded)
def test_added_tokens_do_lower_case(self):
tokenizer = self.get_tokenizer(do_lower_case=True)
special_token = tokenizer.all_special_tokens[0]
text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
toks0 = tokenizer.tokenize(text) # toks before adding new_toks
new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
added = tokenizer.add_tokens(new_toks)
self.assertEqual(added, 2)
toks = tokenizer.tokenize(text)
toks2 = tokenizer.tokenize(text2)
self.assertEqual(len(toks), len(toks2))
self.assertNotEqual(len(toks), len(toks0)) # toks0 should be longer
self.assertListEqual(toks, toks2)
# Check that none of the special tokens are lowercased
sequence_with_special_tokens = "A " + " yEs ".join(tokenizer.all_special_tokens) + " B"
tokenized_sequence = tokenizer.tokenize(sequence_with_special_tokens)
for special_token in tokenizer.all_special_tokens:
self.assertTrue(special_token in tokenized_sequence)
tokenizer = self.get_tokenizer(do_lower_case=False)
added = tokenizer.add_tokens(new_toks)
self.assertEqual(added, 4)
toks = tokenizer.tokenize(text)
toks2 = tokenizer.tokenize(text2)
self.assertEqual(len(toks), len(toks2)) # Length should still be the same
self.assertNotEqual(len(toks), len(toks0))
self.assertNotEqual(toks[1], toks2[1]) # But at least the first non-special tokens should differ
def test_add_tokens_tokenizer(self):
tokenizer = self.get_tokenizer()
vocab_size = tokenizer.vocab_size
all_size = len(tokenizer)
self.assertNotEqual(vocab_size, 0)
self.assertEqual(vocab_size, all_size)
new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"]
added_toks = tokenizer.add_tokens(new_toks)
vocab_size_2 = tokenizer.vocab_size
all_size_2 = len(tokenizer)
self.assertNotEqual(vocab_size_2, 0)
self.assertEqual(vocab_size, vocab_size_2)
self.assertEqual(added_toks, len(new_toks))
self.assertEqual(all_size_2, all_size + len(new_toks))
tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)
self.assertGreaterEqual(len(tokens), 4)
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
vocab_size_3 = tokenizer.vocab_size
all_size_3 = len(tokenizer)
self.assertNotEqual(vocab_size_3, 0)
self.assertEqual(vocab_size, vocab_size_3)
self.assertEqual(added_toks_2, len(new_toks_2))
self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))
tokens = tokenizer.encode(
">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False
)
self.assertGreaterEqual(len(tokens), 6)
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
self.assertGreater(tokens[0], tokens[1])
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
self.assertGreater(tokens[-2], tokens[-3])
self.assertEqual(tokens[0], tokenizer.eos_token_id)
self.assertEqual(tokens[-2], tokenizer.pad_token_id)
def test_add_special_tokens(self):
tokenizer = self.get_tokenizer()
input_text, output_text = self.get_input_output_texts()
special_token = "[SPECIAL TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token})
encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False)
assert len(encoded_special_token) == 1
text = " ".join([input_text, special_token, output_text])
encoded = tokenizer.encode(text, add_special_tokens=False)
input_encoded = tokenizer.encode(input_text, add_special_tokens=False)
output_encoded = tokenizer.encode(output_text, add_special_tokens=False)
special_token_id = tokenizer.encode(special_token, add_special_tokens=False)
assert encoded == input_encoded + special_token_id + output_encoded
decoded = tokenizer.decode(encoded, skip_special_tokens=True)
assert special_token not in decoded
def test_required_methods_tokenizer(self):
tokenizer = self.get_tokenizer()
input_text, output_text = self.get_input_output_texts()
tokens = tokenizer.tokenize(input_text)
ids = tokenizer.convert_tokens_to_ids(tokens)
ids_2 = tokenizer.encode(input_text, add_special_tokens=False)
self.assertListEqual(ids, ids_2)
tokens_2 = tokenizer.convert_ids_to_tokens(ids)
text_2 = tokenizer.decode(ids)
self.assertEqual(text_2, output_text)
self.assertNotEqual(len(tokens_2), 0)
self.assertIsInstance(text_2, str)
def test_encode_decode_with_spaces(self):
tokenizer = self.get_tokenizer()
new_toks = ["[ABC]", "[DEF]", "GHI IHG"]
tokenizer.add_tokens(new_toks)
input = "[ABC] [DEF] [ABC] GHI IHG [DEF]"
encoded = tokenizer.encode(input, add_special_tokens=False)
decoded = tokenizer.decode(encoded)
self.assertEqual(decoded, input)
def test_pretrained_model_lists(self):
weights_list = list(self.tokenizer_class.max_model_input_sizes.keys())
weights_lists_2 = []
for file_id, map_list in self.tokenizer_class.pretrained_vocab_files_map.items():
weights_lists_2.append(list(map_list.keys()))
for weights_list_2 in weights_lists_2:
self.assertListEqual(weights_list, weights_list_2)
def test_mask_output(self):
tokenizer = self.get_tokenizer()
if tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer":
seq_0 = "Test this method."
seq_1 = "With these inputs."
information = tokenizer.encode_plus(seq_0, seq_1, add_special_tokens=True)
sequences, mask = information["input_ids"], information["token_type_ids"]
self.assertEqual(len(sequences), len(mask))
def test_number_of_added_tokens(self):
tokenizer = self.get_tokenizer()
seq_0 = "Test this method."
seq_1 = "With these inputs."
sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=False)
attached_sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=True)
# Method is implemented (e.g. not GPT-2)
if len(attached_sequences) != 2:
self.assertEqual(tokenizer.num_added_tokens(pair=True), len(attached_sequences) - len(sequences))
def test_maximum_encoding_length_single_input(self):
tokenizer = self.get_tokenizer()
seq_0 = "This is a sentence to be encoded."
stride = 2
sequence = tokenizer.encode(seq_0, add_special_tokens=False)
num_added_tokens = tokenizer.num_added_tokens()
total_length = len(sequence) + num_added_tokens
information = tokenizer.encode_plus(
seq_0, max_length=total_length - 2, add_special_tokens=True, stride=stride, return_overflowing_tokens=True,
)
truncated_sequence = information["input_ids"]
overflowing_tokens = information["overflowing_tokens"]
self.assertEqual(len(overflowing_tokens), 2 + stride)
self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :])
self.assertEqual(len(truncated_sequence), total_length - 2)
self.assertEqual(truncated_sequence, tokenizer.build_inputs_with_special_tokens(sequence[:-2]))
def test_maximum_encoding_length_pair_input(self):
tokenizer = self.get_tokenizer()
seq_0 = "This is a sentence to be encoded."
seq_1 = "This is another sentence to be encoded."
stride = 2
sequence_0_no_special_tokens = tokenizer.encode(seq_0, add_special_tokens=False)
sequence_1_no_special_tokens = tokenizer.encode(seq_1, add_special_tokens=False)
sequence = tokenizer.encode(seq_0, seq_1, add_special_tokens=True)
truncated_second_sequence = tokenizer.build_inputs_with_special_tokens(
tokenizer.encode(seq_0, add_special_tokens=False), tokenizer.encode(seq_1, add_special_tokens=False)[:-2],
)
information = tokenizer.encode_plus(
seq_0,
seq_1,
max_length=len(sequence) - 2,
add_special_tokens=True,
stride=stride,
truncation_strategy="only_second",
return_overflowing_tokens=True,
)
information_first_truncated = tokenizer.encode_plus(
seq_0,
seq_1,
max_length=len(sequence) - 2,
add_special_tokens=True,
stride=stride,
truncation_strategy="only_first",
return_overflowing_tokens=True,
)
truncated_sequence = information["input_ids"]
overflowing_tokens = information["overflowing_tokens"]
overflowing_tokens_first_truncated = information_first_truncated["overflowing_tokens"]
self.assertEqual(len(overflowing_tokens), 2 + stride)
self.assertEqual(overflowing_tokens, sequence_1_no_special_tokens[-(2 + stride) :])
self.assertEqual(overflowing_tokens_first_truncated, sequence_0_no_special_tokens[-(2 + stride) :])
self.assertEqual(len(truncated_sequence), len(sequence) - 2)
self.assertEqual(truncated_sequence, truncated_second_sequence)
def test_encode_input_type(self):
tokenizer = self.get_tokenizer()
sequence = "Let's encode this sequence"
tokens = tokenizer.tokenize(sequence)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
formatted_input = tokenizer.encode(sequence, add_special_tokens=True)
self.assertEqual(tokenizer.encode(tokens, add_special_tokens=True), formatted_input)
self.assertEqual(tokenizer.encode(input_ids, add_special_tokens=True), formatted_input)
def test_special_tokens_mask(self):
tokenizer = self.get_tokenizer()
sequence_0 = "Encode this."
sequence_1 = "This one too please."
# Testing single inputs
encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
encoded_sequence_dict = tokenizer.encode_plus(
sequence_0, add_special_tokens=True, return_special_tokens_mask=True
)
encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
filtered_sequence = [
(x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
]
filtered_sequence = [x for x in filtered_sequence if x is not None]
self.assertEqual(encoded_sequence, filtered_sequence)
# Testing inputs pairs
encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False) + tokenizer.encode(
sequence_1, add_special_tokens=False
)
encoded_sequence_dict = tokenizer.encode_plus(
sequence_0, sequence_1, add_special_tokens=True, return_special_tokens_mask=True
)
encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
filtered_sequence = [
(x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
]
filtered_sequence = [x for x in filtered_sequence if x is not None]
self.assertEqual(encoded_sequence, filtered_sequence)
# Testing with already existing special tokens
if tokenizer.cls_token_id == tokenizer.unk_token_id and tokenizer.cls_token_id == tokenizer.unk_token_id:
tokenizer.add_special_tokens({"cls_token": "</s>", "sep_token": "<s>"})
encoded_sequence_dict = tokenizer.encode_plus(
sequence_0, add_special_tokens=True, return_special_tokens_mask=True
)
encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
special_tokens_mask_orig = encoded_sequence_dict["special_tokens_mask"]
special_tokens_mask = tokenizer.get_special_tokens_mask(
encoded_sequence_w_special, already_has_special_tokens=True
)
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
self.assertEqual(special_tokens_mask_orig, special_tokens_mask)
def test_padding_to_max_length(self):
tokenizer = self.get_tokenizer()
sequence = "Sequence"
padding_size = 10
padding_idx = tokenizer.pad_token_id
# RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
tokenizer.padding_side = "right"
encoded_sequence = tokenizer.encode(sequence)
sequence_length = len(encoded_sequence)
padded_sequence = tokenizer.encode(sequence, max_length=sequence_length + padding_size, pad_to_max_length=True)
padded_sequence_length = len(padded_sequence)
assert sequence_length + padding_size == padded_sequence_length
assert encoded_sequence + [padding_idx] * padding_size == padded_sequence
# LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
tokenizer.padding_side = "left"
encoded_sequence = tokenizer.encode(sequence)
sequence_length = len(encoded_sequence)
padded_sequence = tokenizer.encode(sequence, max_length=sequence_length + padding_size, pad_to_max_length=True)
padded_sequence_length = len(padded_sequence)
assert sequence_length + padding_size == padded_sequence_length
assert [padding_idx] * padding_size + encoded_sequence == padded_sequence
# RIGHT & LEFT PADDING - Check that nothing is done when a maximum length is not specified
encoded_sequence = tokenizer.encode(sequence)
sequence_length = len(encoded_sequence)
tokenizer.padding_side = "right"
padded_sequence_right = tokenizer.encode(sequence, pad_to_max_length=True)
padded_sequence_right_length = len(padded_sequence_right)
tokenizer.padding_side = "left"
padded_sequence_left = tokenizer.encode(sequence, pad_to_max_length=True)
padded_sequence_left_length = len(padded_sequence_left)
assert sequence_length == padded_sequence_right_length
assert encoded_sequence == padded_sequence_right
assert sequence_length == padded_sequence_left_length
assert encoded_sequence == padded_sequence_left
def test_encode_plus_with_padding(self):
tokenizer = self.get_tokenizer()
sequence = "Sequence"
padding_size = 10
padding_idx = tokenizer.pad_token_id
token_type_padding_idx = tokenizer.pad_token_type_id
encoded_sequence = tokenizer.encode_plus(sequence, return_special_tokens_mask=True)
input_ids = encoded_sequence["input_ids"]
token_type_ids = encoded_sequence["token_type_ids"]
attention_mask = encoded_sequence["attention_mask"]
special_tokens_mask = encoded_sequence["special_tokens_mask"]
sequence_length = len(input_ids)
# Test right padding
tokenizer.padding_side = "right"
padded_sequence = tokenizer.encode_plus(
sequence,
max_length=sequence_length + padding_size,
pad_to_max_length=True,
return_special_tokens_mask=True,
)
padded_input_ids = padded_sequence["input_ids"]
padded_token_type_ids = padded_sequence["token_type_ids"]
padded_attention_mask = padded_sequence["attention_mask"]
padded_special_tokens_mask = padded_sequence["special_tokens_mask"]
padded_sequence_length = len(padded_input_ids)
assert sequence_length + padding_size == padded_sequence_length
assert input_ids + [padding_idx] * padding_size == padded_input_ids
assert token_type_ids + [token_type_padding_idx] * padding_size == padded_token_type_ids
assert attention_mask + [0] * padding_size == padded_attention_mask
assert special_tokens_mask + [1] * padding_size == padded_special_tokens_mask
# Test left padding
tokenizer.padding_side = "left"
padded_sequence = tokenizer.encode_plus(
sequence,
max_length=sequence_length + padding_size,
pad_to_max_length=True,
return_special_tokens_mask=True,
)
padded_input_ids = padded_sequence["input_ids"]
padded_token_type_ids = padded_sequence["token_type_ids"]
padded_attention_mask = padded_sequence["attention_mask"]
padded_special_tokens_mask = padded_sequence["special_tokens_mask"]
padded_sequence_length = len(padded_input_ids)
assert sequence_length + padding_size == padded_sequence_length
assert [padding_idx] * padding_size + input_ids == padded_input_ids
assert [token_type_padding_idx] * padding_size + token_type_ids == padded_token_type_ids
assert [0] * padding_size + attention_mask == padded_attention_mask
assert [1] * padding_size + special_tokens_mask == padded_special_tokens_mask
def test_separate_tokenizers(self):
# This tests that tokenizers don't impact others. Unfortunately the case where it fails is when
# we're loading an S3 configuration from a pre-trained identifier, and we have no way of testing those today.
tokenizer = self.get_tokenizer(random_argument=True)
print(tokenizer.init_kwargs)
assert tokenizer.init_kwargs["random_argument"] is True
new_tokenizer = self.get_tokenizer(random_argument=False)
print(tokenizer.init_kwargs)
print(new_tokenizer.init_kwargs)
assert tokenizer.init_kwargs["random_argument"] is True
assert new_tokenizer.init_kwargs["random_argument"] is False
|