File size: 8,323 Bytes
75466df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import random
import unittest

from transformers import is_torch_available

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor
from .utils import CACHE_DIR, require_torch, slow, torch_device


if is_torch_available():
    import torch
    from transformers import TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel
    from transformers.modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP


@require_torch
class TransfoXLModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (TransfoXLModel, TransfoXLLMHeadModel) if is_torch_available() else ()
    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False

    class TransfoXLModelTester(object):
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            mem_len=30,
            clamp_len=15,
            is_training=True,
            use_labels=True,
            vocab_size=99,
            cutoffs=[10, 50, 80],
            hidden_size=32,
            d_embed=32,
            num_attention_heads=4,
            d_head=8,
            d_inner=128,
            div_val=2,
            num_hidden_layers=5,
            scope=None,
            seed=1,
        ):
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.mem_len = mem_len
            self.key_length = seq_length + mem_len
            self.clamp_len = clamp_len
            self.is_training = is_training
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.cutoffs = cutoffs
            self.hidden_size = hidden_size
            self.d_embed = d_embed
            self.num_attention_heads = num_attention_heads
            self.d_head = d_head
            self.d_inner = d_inner
            self.div_val = div_val
            self.num_hidden_layers = num_hidden_layers
            self.scope = scope
            self.seed = seed

        def prepare_config_and_inputs(self):
            input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            lm_labels = None
            if self.use_labels:
                lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            config = TransfoXLConfig(
                vocab_size=self.vocab_size,
                mem_len=self.mem_len,
                clamp_len=self.clamp_len,
                cutoffs=self.cutoffs,
                d_model=self.hidden_size,
                d_embed=self.d_embed,
                n_head=self.num_attention_heads,
                d_head=self.d_head,
                d_inner=self.d_inner,
                div_val=self.div_val,
                n_layer=self.num_hidden_layers,
            )

            return (config, input_ids_1, input_ids_2, lm_labels)

        def set_seed(self):
            random.seed(self.seed)
            torch.manual_seed(self.seed)

        def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
            model = TransfoXLModel(config)
            model.to(torch_device)
            model.eval()

            hidden_states_1, mems_1 = model(input_ids_1)
            hidden_states_2, mems_2 = model(input_ids_2, mems_1)
            outputs = {
                "hidden_states_1": hidden_states_1,
                "mems_1": mems_1,
                "hidden_states_2": hidden_states_2,
                "mems_2": mems_2,
            }
            return outputs

        def check_transfo_xl_model_output(self, result):
            self.parent.assertListEqual(
                list(result["hidden_states_1"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )
            self.parent.assertListEqual(
                list(result["hidden_states_2"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_1"]),
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_2"]),
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )

        def create_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
            model = TransfoXLLMHeadModel(config)
            model.to(torch_device)
            model.eval()

            lm_logits_1, mems_1 = model(input_ids_1)
            loss_1, _, mems_1 = model(input_ids_1, labels=lm_labels)
            lm_logits_2, mems_2 = model(input_ids_2, mems=mems_1)
            loss_2, _, mems_2 = model(input_ids_2, labels=lm_labels, mems=mems_1)

            outputs = {
                "loss_1": loss_1,
                "mems_1": mems_1,
                "lm_logits_1": lm_logits_1,
                "loss_2": loss_2,
                "mems_2": mems_2,
                "lm_logits_2": lm_logits_2,
            }
            return outputs

        def check_transfo_xl_lm_head_output(self, result):
            self.parent.assertListEqual(list(result["loss_1"].size()), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(
                list(result["lm_logits_1"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_1"]),
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )

            self.parent.assertListEqual(list(result["loss_2"].size()), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(
                list(result["lm_logits_2"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_2"]),
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (config, input_ids_1, input_ids_2, lm_labels) = config_and_inputs
            inputs_dict = {"input_ids": input_ids_1}
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TransfoXLModelTest.TransfoXLModelTester(self)
        self.config_tester = ConfigTester(self, config_class=TransfoXLConfig, d_embed=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_transfo_xl_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        output_result = self.model_tester.create_transfo_xl_model(*config_and_inputs)
        self.model_tester.check_transfo_xl_model_output(output_result)

    def test_transfo_xl_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        output_result = self.model_tester.create_transfo_xl_lm_head(*config_and_inputs)
        self.model_tester.check_transfo_xl_lm_head_output(output_result)

    @slow
    def test_model_from_pretrained(self):
        for model_name in list(TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            model = TransfoXLModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
            self.assertIsNotNone(model)