File size: 5,108 Bytes
75466df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import logging
import unittest

from transformers import is_tf_available

from .utils import DUMMY_UNKWOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, require_tf, slow


if is_tf_available():
    from transformers import (
        AutoConfig,
        BertConfig,
        TFAutoModel,
        TFBertModel,
        TFAutoModelForPreTraining,
        TFBertForPreTraining,
        TFAutoModelWithLMHead,
        TFBertForMaskedLM,
        TFRobertaForMaskedLM,
        TFAutoModelForSequenceClassification,
        TFBertForSequenceClassification,
        TFAutoModelForQuestionAnswering,
        TFBertForQuestionAnswering,
    )


@require_tf
class TFAutoModelTest(unittest.TestCase):
    @slow
    def test_model_from_pretrained(self):
        import h5py

        self.assertTrue(h5py.version.hdf5_version.startswith("1.10"))

        logging.basicConfig(level=logging.INFO)
        # for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
        for model_name in ["bert-base-uncased"]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = TFAutoModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertModel)

    @slow
    def test_model_for_pretraining_from_pretrained(self):
        import h5py

        self.assertTrue(h5py.version.hdf5_version.startswith("1.10"))

        logging.basicConfig(level=logging.INFO)
        # for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
        for model_name in ["bert-base-uncased"]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = TFAutoModelForPreTraining.from_pretrained(model_name)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertForPreTraining)

    @slow
    def test_lmhead_model_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
        # for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
        for model_name in ["bert-base-uncased"]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = TFAutoModelWithLMHead.from_pretrained(model_name)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertForMaskedLM)

    @slow
    def test_sequence_classification_model_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
        # for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
        for model_name in ["bert-base-uncased"]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertForSequenceClassification)

    @slow
    def test_question_answering_model_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
        # for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
        for model_name in ["bert-base-uncased"]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = TFAutoModelForQuestionAnswering.from_pretrained(model_name)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertForQuestionAnswering)

    def test_from_pretrained_identifier(self):
        logging.basicConfig(level=logging.INFO)
        model = TFAutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
        self.assertIsInstance(model, TFBertForMaskedLM)
        self.assertEqual(model.num_parameters(), 14830)
        self.assertEqual(model.num_parameters(only_trainable=True), 14830)

    def test_from_identifier_from_model_type(self):
        logging.basicConfig(level=logging.INFO)
        model = TFAutoModelWithLMHead.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER)
        self.assertIsInstance(model, TFRobertaForMaskedLM)
        self.assertEqual(model.num_parameters(), 14830)
        self.assertEqual(model.num_parameters(only_trainable=True), 14830)