File size: 12,995 Bytes
75466df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor
from .utils import CACHE_DIR, require_torch, slow, torch_device


if is_torch_available():
    import torch
    from transformers import (
        RobertaConfig,
        RobertaModel,
        RobertaForMaskedLM,
        RobertaForSequenceClassification,
        RobertaForTokenClassification,
    )
    from transformers.modeling_roberta import RobertaEmbeddings
    from transformers.modeling_roberta import ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP


@require_torch
class RobertaModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (RobertaForMaskedLM, RobertaModel) if is_torch_available() else ()

    class RobertaModelTester(object):
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=True,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = RobertaConfig(
                vocab_size=self.vocab_size,
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
                initializer_range=self.initializer_range,
            )

            return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

        def check_loss_output(self, result):
            self.parent.assertListEqual(list(result["loss"].size()), [])

        def create_and_check_roberta_model(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            model = RobertaModel(config=config)
            model.to(torch_device)
            model.eval()
            sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
            sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
            sequence_output, pooled_output = model(input_ids)

            result = {
                "sequence_output": sequence_output,
                "pooled_output": pooled_output,
            }
            self.parent.assertListEqual(
                list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )
            self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])

        def create_and_check_roberta_for_masked_lm(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            model = RobertaForMaskedLM(config=config)
            model.to(torch_device)
            model.eval()
            loss, prediction_scores = model(
                input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels
            )
            result = {
                "loss": loss,
                "prediction_scores": prediction_scores,
            }
            self.parent.assertListEqual(
                list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
            self.check_loss_output(result)

        def create_and_check_roberta_for_token_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            config.num_labels = self.num_labels
            model = RobertaForTokenClassification(config=config)
            model.to(torch_device)
            model.eval()
            loss, logits = model(
                input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
            )
            result = {
                "loss": loss,
                "logits": logits,
            }
            self.parent.assertListEqual(
                list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels]
            )
            self.check_loss_output(result)

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (
                config,
                input_ids,
                token_type_ids,
                input_mask,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
            return config, inputs_dict

    def setUp(self):
        self.model_tester = RobertaModelTest.RobertaModelTester(self)
        self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_roberta_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_for_masked_lm(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in list(ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            model = RobertaModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
            self.assertIsNotNone(model)

    def test_create_position_ids_respects_padding_index(self):
        """ Ensure that the default position ids only assign a sequential . This is a regression
        test for https://github.com/huggingface/transformers/issues/1761

        The position ids should be masked with the embedding object's padding index. Therefore, the
        first available non-padding position index is RobertaEmbeddings.padding_idx + 1
        """
        config = self.model_tester.prepare_config_and_inputs()[0]
        model = RobertaEmbeddings(config=config)

        input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]])
        expected_positions = torch.as_tensor(
            [[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]]
        )

        position_ids = model.create_position_ids_from_input_ids(input_ids)
        self.assertEqual(position_ids.shape, expected_positions.shape)
        self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))

    def test_create_position_ids_from_inputs_embeds(self):
        """ Ensure that the default position ids only assign a sequential . This is a regression
        test for https://github.com/huggingface/transformers/issues/1761

        The position ids should be masked with the embedding object's padding index. Therefore, the
        first available non-padding position index is RobertaEmbeddings.padding_idx + 1
        """
        config = self.model_tester.prepare_config_and_inputs()[0]
        embeddings = RobertaEmbeddings(config=config)

        inputs_embeds = torch.Tensor(2, 4, 30)
        expected_single_positions = [
            0 + embeddings.padding_idx + 1,
            1 + embeddings.padding_idx + 1,
            2 + embeddings.padding_idx + 1,
            3 + embeddings.padding_idx + 1,
        ]
        expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions])
        position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds)
        self.assertEqual(position_ids.shape, expected_positions.shape)
        self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))


class RobertaModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_masked_lm(self):
        model = RobertaForMaskedLM.from_pretrained("roberta-base")

        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
        output = model(input_ids)[0]
        expected_shape = torch.Size((1, 11, 50265))
        self.assertEqual(output.shape, expected_shape)
        # compare the actual values for a slice.
        expected_slice = torch.Tensor(
            [[[33.8843, -4.3107, 22.7779], [4.6533, -2.8099, 13.6252], [1.8222, -3.6898, 8.8600]]]
        )
        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-3))

    @slow
    def test_inference_no_head(self):
        model = RobertaModel.from_pretrained("roberta-base")

        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
        output = model(input_ids)[0]
        # compare the actual values for a slice.
        expected_slice = torch.Tensor(
            [[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0539, -0.0174], [0.0548, 0.0799, 0.1687]]]
        )
        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-3))

    @slow
    def test_inference_classification_head(self):
        model = RobertaForSequenceClassification.from_pretrained("roberta-large-mnli")

        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
        output = model(input_ids)[0]
        expected_shape = torch.Size((1, 3))
        self.assertEqual(output.shape, expected_shape)
        expected_tensor = torch.Tensor([[-0.9469, 0.3913, 0.5118]])
        self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-3))