File size: 1,884 Bytes
75466df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# coding=utf-8
# Copyright 2018 The Hugging Face Inc. Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import unittest

from transformers import is_torch_available

from .utils import require_torch, slow


if is_torch_available():
    from transformers import BertModel, BertForMaskedLM, Model2Model
    from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP


@require_torch
class EncoderDecoderModelTest(unittest.TestCase):
    @slow
    def test_model2model_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
        for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            model = Model2Model.from_pretrained(model_name)
            self.assertIsInstance(model.encoder, BertModel)
            self.assertIsInstance(model.decoder, BertForMaskedLM)
            self.assertEqual(model.decoder.config.is_decoder, True)
            self.assertEqual(model.encoder.config.is_decoder, False)

    def test_model2model_from_pretrained_not_bert(self):
        logging.basicConfig(level=logging.INFO)
        with self.assertRaises(ValueError):
            _ = Model2Model.from_pretrained("roberta")

        with self.assertRaises(ValueError):
            _ = Model2Model.from_pretrained("distilbert")

        with self.assertRaises(ValueError):
            _ = Model2Model.from_pretrained("does-not-exist")