Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 3,520 Bytes
75466df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
XLM
----------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~
The XLM model was proposed in `Cross-lingual Language Model Pretraining <https://arxiv.org/abs/1901.07291>`_
by Guillaume Lample*, Alexis Conneau*. It's a transformer pre-trained using one of the following objectives:
- a causal language modeling (CLM) objective (next token prediction),
- a masked language modeling (MLM) objective (Bert-like), or
- a Translation Language Modeling (TLM) object (extension of Bert's MLM to multiple language inputs)
The abstract from the paper is the following:
*Recent studies have demonstrated the efficiency of generative pretraining for English natural language understanding.
In this work, we extend this approach to multiple languages and show the effectiveness of cross-lingual pretraining.
We propose two methods to learn cross-lingual language models (XLMs): one unsupervised that only relies on monolingual
data, and one supervised that leverages parallel data with a new cross-lingual language model objective. We obtain
state-of-the-art results on cross-lingual classification, unsupervised and supervised machine translation. On XNLI,
our approach pushes the state of the art by an absolute gain of 4.9% accuracy. On unsupervised machine translation,
we obtain 34.3 BLEU on WMT'16 German-English, improving the previous state of the art by more than 9 BLEU. On
supervised machine translation, we obtain a new state of the art of 38.5 BLEU on WMT'16 Romanian-English, outperforming
the previous best approach by more than 4 BLEU. Our code and pretrained models will be made publicly available.*
Tips:
- XLM has many different checkpoints, which were trained using different objectives: CLM, MLM or TLM. Make sure to
select the correct objective for your task (e.g. MLM checkpoints are not suitable for generation).
- XLM has multilingual checkpoints which leverage a specific `lang` parameter. Check out the
`multi-lingual <../multilingual.html>`__ page for more information.
XLMConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMConfig
:members:
XLMTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMTokenizer
:members:
XLMModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMModel
:members:
XLMWithLMHeadModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMWithLMHeadModel
:members:
XLMForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMForSequenceClassification
:members:
XLMForQuestionAnsweringSimple
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMForQuestionAnsweringSimple
:members:
XLMForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMForQuestionAnswering
:members:
TFXLMModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLMModel
:members:
TFXLMWithLMHeadModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLMWithLMHeadModel
:members:
TFXLMForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLMForSequenceClassification
:members:
TFXLMForQuestionAnsweringSimple
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLMForQuestionAnsweringSimple
:members:
|