Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 4,565 Bytes
75466df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
BERT
----------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~
The BERT model was proposed in `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding <https://arxiv.org/abs/1810.04805>`__
by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a bidirectional transformer
pre-trained using a combination of masked language modeling objective and next sentence prediction
on a large corpus comprising the Toronto Book Corpus and Wikipedia.
The abstract from the paper is the following:
*We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations
from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional
representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result,
the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models
for a wide range of tasks, such as question answering and language inference, without substantial task-specific
architecture modifications.*
*BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural
language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI
accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute
improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).*
Tips:
- BERT is a model with absolute position embeddings so it's usually advised to pad the inputs on
the right rather than the left.
- BERT was trained with a masked language modeling (MLM) objective. It is therefore efficient at predicting masked
tokens and at NLU in general, but is not optimal for text generation. Models trained with a causal language
modeling (CLM) objective are better in that regard.
- Alongside MLM, BERT was trained using a next sentence prediction (NSP) objective using the [CLS] token as a sequence
approximate. The user may use this token (the first token in a sequence built with special tokens) to get a sequence
prediction rather than a token prediction. However, averaging over the sequence may yield better results than using
the [CLS] token.
BertConfig
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertConfig
:members:
BertTokenizer
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertTokenizer
:members:
BertModel
~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertModel
:members:
BertForPreTraining
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForPreTraining
:members:
BertForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForMaskedLM
:members:
BertForNextSentencePrediction
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForNextSentencePrediction
:members:
BertForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForSequenceClassification
:members:
BertForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForMultipleChoice
:members:
BertForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForTokenClassification
:members:
BertForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForQuestionAnswering
:members:
TFBertModel
~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFBertModel
:members:
TFBertForPreTraining
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFBertForPreTraining
:members:
TFBertForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFBertForMaskedLM
:members:
TFBertForNextSentencePrediction
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFBertForNextSentencePrediction
:members:
TFBertForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFBertForSequenceClassification
:members:
TFBertForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFBertForMultipleChoice
:members:
TFBertForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFBertForTokenClassification
:members:
TFBertForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFBertForQuestionAnswering
:members:
|