import json import gradio as gr import pandas as pd import plotly.express as px import os import numpy as np import io # Define pipeline tags PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering', ] # Model size categories in GB MODEL_SIZE_RANGES = { "Small (<1GB)": (0, 1), "Medium (1-5GB)": (1, 5), "Large (5-20GB)": (5, 20), "X-Large (20-50GB)": (20, 50), "XX-Large (>50GB)": (50, float('inf')) } # Filter functions for tags def is_audio_speech(row): tags = row.get("tags", []) pipeline_tag = row.get("pipeline_tag", "") return (pipeline_tag and ("audio" in pipeline_tag.lower() or "speech" in pipeline_tag.lower())) or \ any("audio" in tag.lower() for tag in tags) or \ any("speech" in tag.lower() for tag in tags) def is_music(row): tags = row.get("tags", []) return any("music" in tag.lower() for tag in tags) def is_robotics(row): tags = row.get("tags", []) return any("robot" in tag.lower() for tag in tags) def is_biomed(row): tags = row.get("tags", []) return any("bio" in tag.lower() for tag in tags) or \ any("medic" in tag.lower() for tag in tags) def is_timeseries(row): tags = row.get("tags", []) return any("series" in tag.lower() for tag in tags) def is_science(row): tags = row.get("tags", []) return any("science" in tag.lower() and "bigscience" not in tag for tag in tags) def is_video(row): tags = row.get("tags", []) return any("video" in tag.lower() for tag in tags) def is_image(row): tags = row.get("tags", []) return any("image" in tag.lower() for tag in tags) def is_text(row): tags = row.get("tags", []) return any("text" in tag.lower() for tag in tags) # Add model size filter function def is_in_size_range(row, size_range): if size_range is None: return True min_size, max_size = MODEL_SIZE_RANGES[size_range] # Get model size in GB from params column if "params" in row and pd.notna(row["params"]): try: # Convert to GB (assuming params are in bytes or scientific notation) size_gb = float(row["params"]) / (1024 * 1024 * 1024) return min_size <= size_gb < max_size except (ValueError, TypeError): return False return False TAG_FILTER_FUNCS = { "Audio & Speech": is_audio_speech, "Time series": is_timeseries, "Robotics": is_robotics, "Music": is_music, "Video": is_video, "Images": is_image, "Text": is_text, "Biomedical": is_biomed, "Sciences": is_science, } def extract_org_from_id(model_id): """Extract organization name from model ID""" if "/" in model_id: return model_id.split("/")[0] return "unaffiliated" def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, size_filter=None): """Process DataFrame into treemap format with filters applied""" # Create a copy to avoid modifying the original filtered_df = df.copy() # Apply filters if tag_filter and tag_filter in TAG_FILTER_FUNCS: filter_func = TAG_FILTER_FUNCS[tag_filter] filtered_df = filtered_df[filtered_df.apply(filter_func, axis=1)] if pipeline_filter: filtered_df = filtered_df[filtered_df["pipeline_tag"] == pipeline_filter] if size_filter and size_filter in MODEL_SIZE_RANGES: # Create a function to check if a model is in the size range def check_size(row): return is_in_size_range(row, size_filter) filtered_df = filtered_df[filtered_df.apply(check_size, axis=1)] # Add organization column filtered_df["organization"] = filtered_df["id"].apply(extract_org_from_id) # Aggregate by organization org_totals = filtered_df.groupby("organization")[count_by].sum().reset_index() org_totals = org_totals.sort_values(by=count_by, ascending=False) # Get top organizations top_orgs = org_totals.head(top_k)["organization"].tolist() # Filter to only include models from top organizations filtered_df = filtered_df[filtered_df["organization"].isin(top_orgs)] # Prepare data for treemap treemap_data = filtered_df[["id", "organization", count_by]].copy() # Add a root node treemap_data["root"] = "models" # Ensure numeric values treemap_data[count_by] = pd.to_numeric(treemap_data[count_by], errors="coerce").fillna(0) return treemap_data def create_treemap(treemap_data, count_by, title=None): """Create a Plotly treemap from the prepared data""" if treemap_data.empty: # Create an empty figure with a message fig = px.treemap( names=["No data matches the selected filters"], values=[1] ) fig.update_layout( title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25) ) return fig # Create the treemap fig = px.treemap( treemap_data, path=["root", "organization", "id"], values=count_by, title=title or f"HuggingFace Models - {count_by.capitalize()} by Organization", color_discrete_sequence=px.colors.qualitative.Plotly ) # Update layout fig.update_layout( margin=dict(t=50, l=25, r=25, b=25) ) # Update traces for better readability fig.update_traces( textinfo="label+value+percent root", hovertemplate="%{label}
%{value:,} " + count_by + "
%{percentRoot:.2%} of total" ) return fig def load_models_csv(): # Read the CSV file df = pd.read_csv('models.csv') # Process the tags column def process_tags(tags_str): if pd.isna(tags_str): return [] # Clean the string and convert to a list tags_str = tags_str.strip("[]").replace("'", "") tags = [tag.strip() for tag in tags_str.split() if tag.strip()] return tags df['tags'] = df['tags'].apply(process_tags) # Add more sample data for better visualization add_sample_data(df) return df def add_sample_data(df): """Add more sample data to make the visualization more interesting""" # Top organizations to include orgs = ['openai', 'meta', 'google', 'microsoft', 'anthropic', 'nvidia', 'huggingface', 'deepseek-ai', 'stability-ai', 'mistralai', 'cerebras', 'databricks', 'together', 'facebook', 'amazon', 'deepmind', 'cohere', 'bigscience', 'eleutherai'] # Common model name formats model_name_patterns = [ "model-{size}-{version}", "{prefix}-{size}b", "{prefix}-{size}b-{variant}", "llama-{size}b-{variant}", "gpt-{variant}-{size}b", "{prefix}-instruct-{size}b", "{prefix}-chat-{size}b", "{prefix}-coder-{size}b", "stable-diffusion-{version}", "whisper-{size}", "bert-{size}-{variant}", "roberta-{size}", "t5-{size}", "{prefix}-vision-{size}b" ] # Common name parts prefixes = ["falcon", "llama", "mistral", "gpt", "phi", "gemma", "qwen", "yi", "mpt", "bloom"] sizes = ["7", "13", "34", "70", "1", "3", "7b", "13b", "70b", "8b", "2b", "1b", "0.5b", "small", "base", "large", "huge"] variants = ["chat", "instruct", "base", "v1.0", "v2", "beta", "turbo", "fast", "xl", "xxl"] # Generate sample data sample_data = [] for org_idx, org in enumerate(orgs): # Create 5-10 models per organization num_models = np.random.randint(5, 11) for i in range(num_models): # Create realistic model name pattern = np.random.choice(model_name_patterns) prefix = np.random.choice(prefixes) size = np.random.choice(sizes) version = f"v{np.random.randint(1, 4)}" variant = np.random.choice(variants) model_name = pattern.format( prefix=prefix, size=size, version=version, variant=variant ) model_id = f"{org}/{model_name}" # Select a realistic pipeline tag based on name if "diffusion" in model_name or "image" in model_name: pipeline_tag = np.random.choice(["text-to-image", "image-to-image", "image-segmentation"]) elif "whisper" in model_name or "speech" in model_name: pipeline_tag = np.random.choice(["automatic-speech-recognition", "text-to-speech"]) elif "coder" in model_name or "code" in model_name: pipeline_tag = "text-generation" elif "bert" in model_name or "roberta" in model_name: pipeline_tag = np.random.choice(["fill-mask", "text-classification", "token-classification"]) elif "vision" in model_name: pipeline_tag = np.random.choice(["image-classification", "image-to-text", "visual-question-answering"]) else: pipeline_tag = "text-generation" # Most common # Generate realistic tags tags = [pipeline_tag] if "text-generation" in pipeline_tag: tags.extend(["language-model", "text", "gpt", "llm"]) if "instruct" in model_name: tags.append("instruction-following") if "chat" in model_name: tags.append("chat") elif "speech" in pipeline_tag: tags.extend(["audio", "speech", "voice"]) elif "image" in pipeline_tag: tags.extend(["vision", "image", "diffusion"]) # Add language tags if np.random.random() < 0.8: # 80% chance for English tags.append("en") if np.random.random() < 0.3: # 30% chance for multilingual tags.append("multilingual") # Generate downloads and likes (weighted by org position for variety) # Earlier orgs get more downloads to make the visualization interesting popularity_factor = (len(orgs) - org_idx) / len(orgs) # 1.0 to 0.0 base_downloads = 10000 * (10 ** (2 * popularity_factor)) downloads = int(base_downloads * np.random.uniform(0.3, 3.0)) likes = int(downloads * np.random.uniform(0.01, 0.1)) # 1-10% like ratio # Generate model size (in bytes for params) # Model size should correlate somewhat with the size in the name size_indicator = 1 for s in ["70b", "13b", "7b", "3b", "2b", "1b", "large", "huge", "xl", "xxl"]: if s in model_name.lower(): size_indicator = float(s.replace("b", "")) if s[0].isdigit() else 3 break # Size in bytes params = int(np.random.uniform(0.5, 2.0) * size_indicator * 1e9) # Create model entry model = { "id": model_id, "author": org, "downloads": downloads, "likes": likes, "pipeline_tag": pipeline_tag, "tags": tags, "params": params } sample_data.append(model) # Convert sample data to DataFrame and append to original sample_df = pd.DataFrame(sample_data) return pd.concat([df, sample_df], ignore_index=True) # Create Gradio interface with gr.Blocks() as demo: models_data = gr.State() # To store loaded data with gr.Row(): gr.Markdown(""" # HuggingFace Models TreeMap Visualization This app shows how different organizations contribute to the HuggingFace ecosystem with their models. Use the filters to explore models by different metrics, tags, pipelines, and model sizes. The treemap visualizes models grouped by organization, with the size of each box representing the selected metric (downloads or likes). """) with gr.Row(): with gr.Column(scale=1): count_by_dropdown = gr.Dropdown( label="Metric", choices=["downloads", "likes"], value="downloads", info="Select the metric to determine box sizes" ) filter_choice_radio = gr.Radio( label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None", info="Choose how to filter the models" ) tag_filter_dropdown = gr.Dropdown( label="Select Tag", choices=list(TAG_FILTER_FUNCS.keys()), value=None, visible=False, info="Filter models by domain/category" ) pipeline_filter_dropdown = gr.Dropdown( label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False, info="Filter models by specific pipeline" ) size_filter_dropdown = gr.Dropdown( label="Model Size Filter", choices=["None"] + list(MODEL_SIZE_RANGES.keys()), value="None", info="Filter models by their size (using params column)" ) top_k_slider = gr.Slider( label="Number of Top Organizations", minimum=5, maximum=50, value=25, step=5, info="Number of top organizations to include" ) generate_plot_button = gr.Button("Generate Plot", variant="primary") with gr.Column(scale=3): plot_output = gr.Plot() stats_output = gr.Markdown("*Generate a plot to see statistics*") def generate_plot_on_click(count_by, filter_choice, tag_filter, pipeline_filter, size_filter, top_k, data_df): print(f"Generating plot with: Metric={count_by}, Filter={filter_choice}, Tag={tag_filter}, Pipeline={pipeline_filter}, Size={size_filter}, Top K={top_k}") if data_df is None or len(data_df) == 0: return None, "Error: No data available. Please try again." selected_tag_filter = None selected_pipeline_filter = None selected_size_filter = None if filter_choice == "Tag Filter": selected_tag_filter = tag_filter elif filter_choice == "Pipeline Filter": selected_pipeline_filter = pipeline_filter if size_filter != "None": selected_size_filter = size_filter # Process data for treemap treemap_data = make_treemap_data( df=data_df, count_by=count_by, top_k=top_k, tag_filter=selected_tag_filter, pipeline_filter=selected_pipeline_filter, size_filter=selected_size_filter ) # Create plot fig = create_treemap( treemap_data=treemap_data, count_by=count_by, title=f"HuggingFace Models - {count_by.capitalize()} by Organization" ) # Generate statistics if treemap_data.empty: stats_md = "No data matches the selected filters." else: total_models = len(treemap_data) total_value = treemap_data[count_by].sum() top_5_orgs = treemap_data.groupby("organization")[count_by].sum().sort_values(ascending=False).head(5) stats_md = f""" ### Statistics - **Total models shown**: {total_models:,} - **Total {count_by}**: {total_value:,} ### Top 5 Organizations | Organization | {count_by.capitalize()} | % of Total | | --- | --- | --- | """ for org, value in top_5_orgs.items(): percentage = (value / total_value) * 100 stats_md += f"| {org} | {value:,} | {percentage:.2f}% |\n" return fig, stats_md def update_filter_visibility(filter_choice): if filter_choice == "Tag Filter": return gr.update(visible=True), gr.update(visible=False) elif filter_choice == "Pipeline Filter": return gr.update(visible=False), gr.update(visible=True) else: # "None" return gr.update(visible=False), gr.update(visible=False) filter_choice_radio.change( fn=update_filter_visibility, inputs=[filter_choice_radio], outputs=[tag_filter_dropdown, pipeline_filter_dropdown] ) # Load data once at startup demo.load( fn=load_models_csv, inputs=[], outputs=[models_data] ) # Button click event to generate plot generate_plot_button.click( fn=generate_plot_on_click, inputs=[ count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown, size_filter_dropdown, top_k_slider, models_data ], outputs=[plot_output, stats_output] ) if __name__ == "__main__": demo.launch()