import json import gradio as gr import pandas as pd import plotly.express as px import pyarrow.parquet as pq import os import requests from io import BytesIO import numpy as np # Define pipeline tags from the provided code PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering', ] # Model size categories in GB MODEL_SIZE_RANGES = { "Small (<1GB)": (0, 1), "Medium (1-5GB)": (1, 5), "Large (5-20GB)": (5, 20), "X-Large (20-50GB)": (20, 50), "XX-Large (>50GB)": (50, float('inf')) } # Filter functions for tags - keeping the same from provided code def is_audio_speech(model_dict): tags = model_dict.get("tags", []) pipeline_tag = model_dict.get("pipeline_tag", "") return (pipeline_tag and ("audio" in pipeline_tag.lower() or "speech" in pipeline_tag.lower())) or \ any("audio" in tag.lower() for tag in tags) or \ any("speech" in tag.lower() for tag in tags) def is_music(model_dict): tags = model_dict.get("tags", []) return any("music" in tag.lower() for tag in tags) def is_robotics(model_dict): tags = model_dict.get("tags", []) return any("robot" in tag.lower() for tag in tags) def is_biomed(model_dict): tags = model_dict.get("tags", []) return any("bio" in tag.lower() for tag in tags) or \ any("medic" in tag.lower() for tag in tags) def is_timeseries(model_dict): tags = model_dict.get("tags", []) return any("series" in tag.lower() for tag in tags) def is_science(model_dict): tags = model_dict.get("tags", []) return any("science" in tag.lower() and "bigscience" not in tag for tag in tags) def is_video(model_dict): tags = model_dict.get("tags", []) return any("video" in tag.lower() for tag in tags) def is_image(model_dict): tags = model_dict.get("tags", []) return any("image" in tag.lower() for tag in tags) def is_text(model_dict): tags = model_dict.get("tags", []) return any("text" in tag.lower() for tag in tags) # Add model size filter function def is_in_size_range(model_dict, size_range): if size_range is None: return True min_size, max_size = MODEL_SIZE_RANGES[size_range] # Get model size in GB from safetensors total (if available) safetensors = model_dict.get("safetensors", None) if safetensors and isinstance(safetensors, dict) and "total" in safetensors: # Convert bytes to GB size_gb = safetensors["total"] / (1024 * 1024 * 1024) return min_size <= size_gb < max_size return False TAG_FILTER_FUNCS = { "Audio & Speech": is_audio_speech, "Time series": is_timeseries, "Robotics": is_robotics, "Music": is_music, "Video": is_video, "Images": is_image, "Text": is_text, "Biomedical": is_biomed, "Sciences": is_science, } def extract_org_from_id(model_id): """Extract organization name from model ID""" if "/" in model_id: return model_id.split("/")[0] return "unaffiliated" def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, size_filter=None): """Process DataFrame into treemap format with filters applied""" # Create a copy to avoid modifying the original filtered_df = df.copy() # Apply filters if tag_filter and tag_filter in TAG_FILTER_FUNCS: filter_func = TAG_FILTER_FUNCS[tag_filter] filtered_df = filtered_df[filtered_df.apply(filter_func, axis=1)] if pipeline_filter: filtered_df = filtered_df[filtered_df["pipeline_tag"] == pipeline_filter] if size_filter and size_filter in MODEL_SIZE_RANGES: # Create a function to check if a model is in the size range def check_size(row): return is_in_size_range(row, size_filter) filtered_df = filtered_df[filtered_df.apply(check_size, axis=1)] # Add organization column filtered_df["organization"] = filtered_df["id"].apply(extract_org_from_id) # Aggregate by organization org_totals = filtered_df.groupby("organization")[count_by].sum().reset_index() org_totals = org_totals.sort_values(by=count_by, ascending=False) # Get top organizations top_orgs = org_totals.head(top_k)["organization"].tolist() # Filter to only include models from top organizations filtered_df = filtered_df[filtered_df["organization"].isin(top_orgs)] # Prepare data for treemap treemap_data = filtered_df[["id", "organization", count_by]].copy() # Add a root node treemap_data["root"] = "models" # Ensure numeric values treemap_data[count_by] = pd.to_numeric(treemap_data[count_by], errors="coerce").fillna(0) return treemap_data def create_treemap(treemap_data, count_by, title=None): """Create a Plotly treemap from the prepared data""" if treemap_data.empty: # Create an empty figure with a message fig = px.treemap( names=["No data matches the selected filters"], values=[1] ) fig.update_layout( title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25) ) return fig # Create the treemap fig = px.treemap( treemap_data, path=["root", "organization", "id"], values=count_by, title=title or f"HuggingFace Models - {count_by.capitalize()} by Organization" ) # Update layout fig.update_layout( margin=dict(t=50, l=25, r=25, b=25) ) # Update traces for better readability fig.update_traces( textinfo="label+value+percent root", hovertemplate="%{label}
%{value:,} " + count_by + "
%{percentRoot:.2%} of total" ) return fig def download_with_progress(url, progress=None): """Download a file with progress tracking""" try: response = requests.get(url, stream=True) total_size = int(response.headers.get('content-length', 0)) block_size = 1024 # 1 Kibibyte data = BytesIO() if total_size == 0: # If content length is unknown, we can't show accurate progress if progress is not None: progress(0, "Starting download...") for chunk in response.iter_content(block_size): data.write(chunk) if progress is not None: progress(0, f"Downloading... (unknown size)") else: downloaded = 0 for chunk in response.iter_content(block_size): downloaded += len(chunk) data.write(chunk) if progress is not None: percent = int(100 * downloaded / total_size) progress(percent / 100, f"Downloading... {percent}% ({downloaded//(1024*1024)}MB/{total_size//(1024*1024)}MB)") return data.getvalue() except Exception as e: print(f"Error in download_with_progress: {e}") raise def update_progress(progress_obj, value, description): """Safely update progress with error handling""" try: if progress_obj is not None: progress_obj(value, description) except Exception as e: print(f"Error updating progress: {e}") def download_and_process_models(progress=None): """Download and process the models data from HuggingFace dataset with progress tracking""" try: # Create a cache directory if not os.path.exists('data'): os.makedirs('data') # Check if we have cached data if os.path.exists('data/processed_models.parquet'): update_progress(progress, 1.0, "Loading from cache...") print("Loading models from cache...") df = pd.read_parquet('data/processed_models.parquet') return df # URL to the models.parquet file url = "https://huggingface.co/datasets/cfahlgren1/hub-stats/resolve/main/models.parquet" update_progress(progress, 0.0, "Starting download...") print(f"Downloading models data from {url}...") try: # Download with progress tracking file_content = download_with_progress(url, progress) update_progress(progress, 0.9, "Parsing parquet file...") # Read the parquet file table = pq.read_table(BytesIO(file_content)) df = table.to_pandas() print(f"Downloaded {len(df)} models") update_progress(progress, 0.95, "Processing data...") # Process the safetensors column if it's a string (JSON) if 'safetensors' in df.columns: def parse_safetensors(val): if isinstance(val, str): try: return json.loads(val) except: return None return val df['safetensors'] = df['safetensors'].apply(parse_safetensors) # Process the tags column if needed if 'tags' in df.columns and len(df) > 0 and not isinstance(df['tags'].iloc[0], list): def parse_tags(val): if isinstance(val, str): try: return json.loads(val) except: return [] return val if isinstance(val, list) else [] df['tags'] = df['tags'].apply(parse_tags) # Cache the processed data update_progress(progress, 0.98, "Saving to cache...") df.to_parquet('data/processed_models.parquet') update_progress(progress, 1.0, "Data ready!") return df except Exception as download_error: print(f"Download failed: {download_error}") update_progress(progress, 0.5, "Download failed, generating sample data...") return create_sample_data(progress) except Exception as e: print(f"Error downloading or processing data: {e}") update_progress(progress, 1.0, "Using sample data (error occurred)") # Return sample data for testing if real data unavailable return create_sample_data(progress) def create_sample_data(progress=None): """Create sample data for testing when real data is unavailable""" print("Creating sample data for testing...") if progress: progress(0.3, "Creating sample data...") # Sample organizations orgs = ['openai', 'meta', 'google', 'microsoft', 'anthropic', 'nvidia', 'huggingface', 'deepseek-ai', 'stability-ai', 'mistralai', 'cerebras', 'databricks', 'together', 'facebook', 'amazon', 'deepmind', 'cohere', 'nvidia', 'bigscience', 'eleutherai'] # Common model name formats model_name_patterns = [ "model-{size}-{version}", "{prefix}-{size}b", "{prefix}-{size}b-{variant}", "llama-{size}b-{variant}", "gpt-{variant}-{size}b", "{prefix}-instruct-{size}b", "{prefix}-chat-{size}b", "{prefix}-coder-{size}b", "stable-diffusion-{version}", "whisper-{size}", "bert-{size}-{variant}", "roberta-{size}", "t5-{size}", "{prefix}-vision-{size}b" ] # Common name parts prefixes = ["falcon", "llama", "mistral", "gpt", "phi", "gemma", "qwen", "yi", "mpt", "bloom"] sizes = ["7", "13", "34", "70", "1", "3", "7b", "13b", "70b", "8b", "2b", "1b", "0.5b", "small", "base", "large", "huge"] variants = ["chat", "instruct", "base", "v1.0", "v2", "beta", "turbo", "fast", "xl", "xxl"] # Generate sample data data = [] total_models = sum(np.random.randint(5, 20) for _ in orgs) models_created = 0 for org_idx, org in enumerate(orgs): # Create 5-20 models per organization num_models = np.random.randint(5, 20) for i in range(num_models): # Create realistic model name pattern = np.random.choice(model_name_patterns) prefix = np.random.choice(prefixes) size = np.random.choice(sizes) version = f"v{np.random.randint(1, 4)}" variant = np.random.choice(variants) model_name = pattern.format( prefix=prefix, size=size, version=version, variant=variant ) model_id = f"{org}/{model_name}" # Select a realistic pipeline tag based on name if "diffusion" in model_name or "image" in model_name: pipeline_tag = np.random.choice(["text-to-image", "image-to-image", "image-segmentation"]) elif "whisper" in model_name or "speech" in model_name: pipeline_tag = np.random.choice(["automatic-speech-recognition", "text-to-speech"]) elif "coder" in model_name or "code" in model_name: pipeline_tag = "text-generation" elif "bert" in model_name or "roberta" in model_name: pipeline_tag = np.random.choice(["fill-mask", "text-classification", "token-classification"]) elif "vision" in model_name: pipeline_tag = np.random.choice(["image-classification", "image-to-text", "visual-question-answering"]) else: pipeline_tag = "text-generation" # Most common # Generate realistic tags tags = [pipeline_tag] if "text-generation" in pipeline_tag: tags.extend(["language-model", "text", "gpt", "llm"]) if "instruct" in model_name: tags.append("instruction-following") if "chat" in model_name: tags.append("chat") elif "speech" in pipeline_tag: tags.extend(["audio", "speech", "voice"]) elif "image" in pipeline_tag: tags.extend(["vision", "image", "diffusion"]) # Add language tags if np.random.random() < 0.8: # 80% chance for English tags.append("en") if np.random.random() < 0.3: # 30% chance for multilingual tags.append("multilingual") # Generate downloads and likes (weighted by org position for variety) # Earlier orgs get more downloads to make the visualization interesting popularity_factor = (len(orgs) - org_idx) / len(orgs) # 1.0 to 0.0 base_downloads = 1000 * (10 ** (2 * popularity_factor)) downloads = int(base_downloads * np.random.uniform(0.3, 3.0)) likes = int(downloads * np.random.uniform(0.01, 0.1)) # 1-10% like ratio # Generate model size (in bytes for safetensors total) # Model size should correlate somewhat with the size in the name size_indicator = 1 for s in ["70b", "13b", "7b", "3b", "2b", "1b", "large", "huge", "xl", "xxl"]: if s in model_name.lower(): size_indicator = float(s.replace("b", "")) if s[0].isdigit() else 3 break # Size in GB, then convert to bytes size_gb = np.random.uniform(0.1, 2.0) * size_indicator if size_gb > 50: # Cap at 100GB size_gb = min(size_gb, 100) size_bytes = int(size_gb * 1e9) # Create model entry model = { "id": model_id, "downloads": downloads, "downloadsAllTime": int(downloads * np.random.uniform(1.5, 3.0)), # All-time higher than recent "likes": likes, "pipeline_tag": pipeline_tag, "tags": tags, "safetensors": {"total": size_bytes} } data.append(model) models_created += 1 if progress and i % 5 == 0: progress(0.3 + 0.6 * (models_created / total_models), f"Created {models_created}/{total_models} sample models...") # Convert to DataFrame df = pd.DataFrame(data) if progress: progress(0.95, "Finalizing sample data...") return df # Create Gradio interface with gr.Blocks() as demo: models_data = gr.State() # To store loaded data # Loading screen components with gr.Row(visible=True) as loading_screen: with gr.Column(scale=1): gr.Markdown(""" # HuggingFace Models TreeMap Visualization Loading data... This might take a moment. """) data_loading_progress = gr.Progress() # Main application components (initially hidden) with gr.Row(visible=False) as main_app: gr.Markdown(""" # HuggingFace Models TreeMap Visualization This app shows how different organizations contribute to the HuggingFace ecosystem with their models. Use the filters to explore models by different metrics, tags, pipelines, and model sizes. The treemap visualizes models grouped by organization, with the size of each box representing the selected metric (downloads or likes). """) with gr.Row(visible=False) as control_panel: with gr.Column(scale=1): count_by_dropdown = gr.Dropdown( label="Metric", choices=["downloads", "downloadsAllTime", "likes"], value="downloads", info="Select the metric to determine box sizes" ) filter_choice_radio = gr.Radio( label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None", info="Choose how to filter the models" ) tag_filter_dropdown = gr.Dropdown( label="Select Tag", choices=list(TAG_FILTER_FUNCS.keys()), value=None, visible=False, info="Filter models by domain/category" ) pipeline_filter_dropdown = gr.Dropdown( label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False, info="Filter models by specific pipeline" ) size_filter_dropdown = gr.Dropdown( label="Model Size Filter", choices=["None"] + list(MODEL_SIZE_RANGES.keys()), value="None", info="Filter models by their size (in safetensors['total'])" ) top_k_slider = gr.Slider( label="Number of Top Organizations", minimum=5, maximum=50, value=25, step=5, info="Number of top organizations to include" ) generate_plot_button = gr.Button("Generate Plot", variant="primary") with gr.Column(scale=3): plot_output = gr.Plot() stats_output = gr.Markdown("*Generate a plot to see statistics*") def generate_plot_on_click(count_by, filter_choice, tag_filter, pipeline_filter, size_filter, top_k, data_df): print(f"Generating plot with: Metric={count_by}, Filter={filter_choice}, Tag={tag_filter}, Pipeline={pipeline_filter}, Size={size_filter}, Top K={top_k}") if data_df is None or len(data_df) == 0: return None, "Error: No data available. Please try again." selected_tag_filter = None selected_pipeline_filter = None selected_size_filter = None if filter_choice == "Tag Filter": selected_tag_filter = tag_filter elif filter_choice == "Pipeline Filter": selected_pipeline_filter = pipeline_filter if size_filter != "None": selected_size_filter = size_filter # Process data for treemap treemap_data = make_treemap_data( df=data_df, count_by=count_by, top_k=top_k, tag_filter=selected_tag_filter, pipeline_filter=selected_pipeline_filter, size_filter=selected_size_filter ) # Create plot fig = create_treemap( treemap_data=treemap_data, count_by=count_by, title=f"HuggingFace Models - {count_by.capitalize()} by Organization" ) # Generate statistics if treemap_data.empty: stats_md = "No data matches the selected filters." else: total_models = len(treemap_data) total_value = treemap_data[count_by].sum() top_5_orgs = treemap_data.groupby("organization")[count_by].sum().sort_values(ascending=False).head(5) stats_md = f""" ### Statistics - **Total models shown**: {total_models:,} - **Total {count_by}**: {total_value:,} ### Top 5 Organizations | Organization | {count_by.capitalize()} | % of Total | | --- | --- | --- | """ for org, value in top_5_orgs.items(): percentage = (value / total_value) * 100 stats_md += f"| {org} | {value:,} | {percentage:.2f}% |\n" return fig, stats_md def update_filter_visibility(filter_choice): if filter_choice == "Tag Filter": return gr.update(visible=True), gr.update(visible=False) elif filter_choice == "Pipeline Filter": return gr.update(visible=False), gr.update(visible=True) else: # "None" return gr.update(visible=False), gr.update(visible=False) filter_choice_radio.change( fn=update_filter_visibility, inputs=[filter_choice_radio], outputs=[tag_filter_dropdown, pipeline_filter_dropdown] ) def load_data_with_progress(progress=gr.Progress()): """Load data with progress tracking and update UI visibility""" data_df = download_and_process_models(progress) # Return both the data and the visibility updates return data_df, gr.update(visible=False), gr.update(visible=True), gr.update(visible=True) # Load data once at startup with progress bar demo.load( fn=load_data_with_progress, inputs=[], outputs=[models_data, loading_screen, main_app, control_panel] ) # Button click event to generate plot generate_plot_button.click( fn=generate_plot_on_click, inputs=[ count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown, size_filter_dropdown, top_k_slider, models_data ], outputs=[plot_output, stats_output] ) if __name__ == "__main__": demo.launch()