OrgStats / app.py
Avijit Ghosh
better execption handling
a1a0756
raw
history blame
30.2 kB
import json
import gradio as gr
import pandas as pd
import plotly.express as px
import os
import numpy as np # Make sure NumPy is imported
import duckdb
from tqdm.auto import tqdm # Standard tqdm for console, gr.Progress will track it
import time
import ast # For safely evaluating string representations of lists/dicts
# --- Constants ---
MODEL_SIZE_RANGES = {
"Small (<1GB)": (0, 1), "Medium (1-5GB)": (1, 5), "Large (5-20GB)": (5, 20),
"X-Large (20-50GB)": (20, 50), "XX-Large (>50GB)": (50, float('inf'))
}
PROCESSED_PARQUET_FILE_PATH = "models_processed.parquet"
HF_PARQUET_URL = 'https://huggingface.co/datasets/cfahlgren1/hub-stats/resolve/main/models.parquet'
TAG_FILTER_CHOICES = [
"Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images",
"Text", "Biomedical", "Sciences"
]
PIPELINE_TAGS = [
'text-generation', 'text-to-image', 'text-classification', 'text2text-generation',
'audio-to-audio', 'feature-extraction', 'image-classification', 'translation',
'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition',
'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering',
'image-feature-extraction', 'summarization', 'zero-shot-image-classification',
'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text',
'audio-classification', 'visual-question-answering', 'text-to-video',
'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video',
'multiple-choice', 'unconditional-image-generation', 'video-classification',
'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text',
'table-question-answering',
]
# --- Utility Functions ---
def extract_model_size(safetensors_data): # Renamed for consistency if used, preprocessor uses extract_model_file_size_gb
try:
if pd.isna(safetensors_data): return 0.0
data_to_parse = safetensors_data
if isinstance(safetensors_data, str):
try:
if (safetensors_data.startswith('{') and safetensors_data.endswith('}')) or \
(safetensors_data.startswith('[') and safetensors_data.endswith(']')):
data_to_parse = ast.literal_eval(safetensors_data)
else: data_to_parse = json.loads(safetensors_data)
except: return 0.0
if isinstance(data_to_parse, dict) and 'total' in data_to_parse:
try:
total_bytes_val = data_to_parse['total']
size_bytes = float(total_bytes_val)
return size_bytes / (1024 * 1024 * 1024)
except (ValueError, TypeError): pass
return 0.0
except: return 0.0
def extract_org_from_id(model_id):
if pd.isna(model_id): return "unaffiliated"
model_id_str = str(model_id)
return model_id_str.split("/")[0] if "/" in model_id_str else "unaffiliated"
# --- THIS IS THE CORRECTED process_tags_for_series from preprocess.py ---
def process_tags_for_series(series_of_tags_values, tqdm_cls=None): # Added tqdm_cls for Gradio progress
processed_tags_accumulator = []
# Determine the iterable (use tqdm if tqdm_cls is provided, else direct iteration)
iterable = series_of_tags_values
if tqdm_cls and tqdm_cls != tqdm : # Check if it's Gradio's progress tracker
iterable = tqdm_cls(series_of_tags_values, desc="Standardizing Tags (App)", unit="row")
elif tqdm_cls == tqdm: # For direct console tqdm if passed
iterable = tqdm(series_of_tags_values, desc="Standardizing Tags (App)", unit="row", leave=False)
for i, tags_value_from_series in enumerate(iterable):
temp_processed_list_for_row = []
current_value_for_error_msg = str(tags_value_from_series)[:200]
try:
if isinstance(tags_value_from_series, list):
current_tags_in_list = []
for tag_item in tags_value_from_series:
try:
if pd.isna(tag_item): continue
str_tag = str(tag_item)
stripped_tag = str_tag.strip()
if stripped_tag:
current_tags_in_list.append(stripped_tag)
except Exception as e_inner_list_proc:
print(f"APP ERROR processing item '{tag_item}' (type: {type(tag_item)}) within a list for row {i}. Error: {e_inner_list_proc}. Original: {current_value_for_error_msg}")
temp_processed_list_for_row = current_tags_in_list
elif isinstance(tags_value_from_series, np.ndarray):
current_tags_in_list = []
for tag_item in tags_value_from_series.tolist():
try:
if pd.isna(tag_item): continue
str_tag = str(tag_item)
stripped_tag = str_tag.strip()
if stripped_tag:
current_tags_in_list.append(stripped_tag)
except Exception as e_inner_array_proc:
print(f"APP ERROR processing item '{tag_item}' (type: {type(tag_item)}) within a NumPy array for row {i}. Error: {e_inner_array_proc}. Original: {current_value_for_error_msg}")
temp_processed_list_for_row = current_tags_in_list
elif tags_value_from_series is None or pd.isna(tags_value_from_series):
temp_processed_list_for_row = []
elif isinstance(tags_value_from_series, str):
processed_str_tags = []
if (tags_value_from_series.startswith('[') and tags_value_from_series.endswith(']')) or \
(tags_value_from_series.startswith('(') and tags_value_from_series.endswith(')')):
try:
evaluated_tags = ast.literal_eval(tags_value_from_series)
if isinstance(evaluated_tags, (list, tuple)):
current_eval_list = []
for tag_item in evaluated_tags:
if pd.isna(tag_item): continue
str_tag = str(tag_item).strip()
if str_tag: current_eval_list.append(str_tag)
processed_str_tags = current_eval_list
except (ValueError, SyntaxError):
pass
if not processed_str_tags:
try:
json_tags = json.loads(tags_value_from_series)
if isinstance(json_tags, list):
current_json_list = []
for tag_item in json_tags:
if pd.isna(tag_item): continue
str_tag = str(tag_item).strip()
if str_tag: current_json_list.append(str_tag)
processed_str_tags = current_json_list
except json.JSONDecodeError:
processed_str_tags = [tag.strip() for tag in tags_value_from_series.split(',') if tag.strip()]
except Exception as e_json_other:
print(f"APP ERROR during JSON processing for string '{current_value_for_error_msg}' for row {i}. Error: {e_json_other}")
processed_str_tags = [tag.strip() for tag in tags_value_from_series.split(',') if tag.strip()]
temp_processed_list_for_row = processed_str_tags
else:
if pd.isna(tags_value_from_series):
temp_processed_list_for_row = []
else:
str_val = str(tags_value_from_series).strip()
temp_processed_list_for_row = [str_val] if str_val else []
processed_tags_accumulator.append(temp_processed_list_for_row)
except Exception as e_outer_tag_proc:
print(f"APP CRITICAL UNHANDLED ERROR processing row {i}: value '{current_value_for_error_msg}' (type: {type(tags_value_from_series)}). Error: {e_outer_tag_proc}. Appending [].")
processed_tags_accumulator.append([])
return processed_tags_accumulator
# --- END OF CORRECTED process_tags_for_series ---
def load_models_data(force_refresh=False, tqdm_cls=None): # tqdm_cls for Gradio progress
if tqdm_cls is None: tqdm_cls = tqdm # Default to standard tqdm if None
overall_start_time = time.time()
print(f"Gradio load_models_data called with force_refresh={force_refresh}")
expected_cols_in_processed_parquet = [
'id', 'downloads', 'downloadsAllTime', 'likes', 'pipeline_tag', 'tags', 'params',
'size_category', 'organization', 'has_audio', 'has_speech', 'has_music',
'has_robot', 'has_bio', 'has_med', 'has_series', 'has_video', 'has_image',
'has_text', 'has_science', 'is_audio_speech', 'is_biomed',
'data_download_timestamp'
]
if not force_refresh and os.path.exists(PROCESSED_PARQUET_FILE_PATH):
print(f"Attempting to load pre-processed data from: {PROCESSED_PARQUET_FILE_PATH}")
try:
df = pd.read_parquet(PROCESSED_PARQUET_FILE_PATH)
elapsed = time.time() - overall_start_time
missing_cols = [col for col in expected_cols_in_processed_parquet if col not in df.columns]
if missing_cols:
raise ValueError(f"Pre-processed Parquet is missing columns: {missing_cols}. Please run preprocessor or refresh data in app.")
if 'has_robot' in df.columns:
robot_count_parquet = df['has_robot'].sum()
print(f"DIAGNOSTIC (App - Parquet Load): 'has_robot' column found. Number of True values: {robot_count_parquet}")
else:
print("DIAGNOSTIC (App - Parquet Load): 'has_robot' column NOT FOUND.")
msg = f"Successfully loaded pre-processed data in {elapsed:.2f}s. Shape: {df.shape}"
print(msg)
return df, True, msg
except Exception as e:
print(f"Could not load pre-processed Parquet: {e}. ")
if force_refresh: print("Proceeding to fetch fresh data as force_refresh=True.")
else:
err_msg = (f"Pre-processed data could not be loaded: {e}. "
"Please use 'Refresh Data from Hugging Face' button.")
return pd.DataFrame(), False, err_msg
df_raw = None
raw_data_source_msg = ""
if force_refresh:
print("force_refresh=True (Gradio). Fetching fresh data...")
fetch_start = time.time()
try:
query = f"SELECT * FROM read_parquet('{HF_PARQUET_URL}')"
df_raw = duckdb.sql(query).df()
if df_raw is None or df_raw.empty: raise ValueError("Fetched data is empty or None.")
raw_data_source_msg = f"Fetched by Gradio in {time.time() - fetch_start:.2f}s. Rows: {len(df_raw)}"
print(raw_data_source_msg)
except Exception as e_hf:
return pd.DataFrame(), False, f"Fatal error fetching from Hugging Face (Gradio): {e_hf}"
else:
err_msg = (f"Pre-processed data '{PROCESSED_PARQUET_FILE_PATH}' not found/invalid. "
"Run preprocessor or use 'Refresh Data' button.")
return pd.DataFrame(), False, err_msg
print(f"Initiating processing for data newly fetched by Gradio. {raw_data_source_msg}")
df = pd.DataFrame() # This will be our processed DataFrame
proc_start = time.time()
core_cols = {'id': str, 'downloads': float, 'downloadsAllTime': float, 'likes': float,
'pipeline_tag': str, 'tags': object, 'safetensors': object}
for col, dtype in core_cols.items():
if col in df_raw.columns:
df[col] = df_raw[col] # Assign raw data first
if dtype == float: df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0.0)
elif dtype == str: df[col] = df[col].astype(str).fillna('')
# For 'tags' and 'safetensors' (object type), no specific conversion here, done later
else: # If column is missing in raw data
if col in ['downloads', 'downloadsAllTime', 'likes']: df[col] = 0.0
elif col == 'pipeline_tag': df[col] = ''
elif col == 'tags': df[col] = pd.Series([[] for _ in range(len(df_raw))]) # Default to empty lists
elif col == 'safetensors': df[col] = None # Default to None
elif col == 'id': return pd.DataFrame(), False, "Critical: 'id' column missing."
output_filesize_col_name = 'params'
if output_filesize_col_name in df_raw.columns and pd.api.types.is_numeric_dtype(df_raw[output_filesize_col_name]):
df[output_filesize_col_name] = pd.to_numeric(df_raw[output_filesize_col_name], errors='coerce').fillna(0.0)
elif 'safetensors' in df.columns:
safetensors_iter = df['safetensors']
if tqdm_cls and tqdm_cls != tqdm:
safetensors_iter = tqdm_cls(df['safetensors'], desc="Extracting model sizes (GB)", unit="row")
elif tqdm_cls == tqdm:
safetensors_iter = tqdm(df['safetensors'], desc="Extracting model sizes (GB)", unit="row", leave=False)
df[output_filesize_col_name] = [extract_model_size(s) for s in safetensors_iter]
df[output_filesize_col_name] = pd.to_numeric(df[output_filesize_col_name], errors='coerce').fillna(0.0)
else:
df[output_filesize_col_name] = 0.0
def get_size_category_gradio(size_gb_val):
try: numeric_size_gb = float(size_gb_val)
except (ValueError, TypeError): numeric_size_gb = 0.0
if pd.isna(numeric_size_gb): numeric_size_gb = 0.0
if 0 <= numeric_size_gb < 1: return "Small (<1GB)"
elif 1 <= numeric_size_gb < 5: return "Medium (1-5GB)"
elif 5 <= numeric_size_gb < 20: return "Large (5-20GB)"
elif 20 <= numeric_size_gb < 50: return "X-Large (20-50GB)"
elif numeric_size_gb >= 50: return "XX-Large (>50GB)"
else: return "Small (<1GB)" # Default
df['size_category'] = df[output_filesize_col_name].apply(get_size_category_gradio)
df['tags'] = process_tags_for_series(df['tags'], tqdm_cls=tqdm_cls)
df['temp_tags_joined'] = df['tags'].apply(
lambda tl: '~~~'.join(str(t).lower().strip() for t in tl if pd.notna(t) and str(t).strip()) if isinstance(tl, list) else ''
)
tag_map = {
'has_audio': ['audio'], 'has_speech': ['speech'], 'has_music': ['music'],
'has_robot': ['robot', 'robotics'],
'has_bio': ['bio'], 'has_med': ['medic', 'medical'],
'has_series': ['series', 'time-series', 'timeseries'],
'has_video': ['video'], 'has_image': ['image', 'vision'],
'has_text': ['text', 'nlp', 'llm']
}
for col, kws in tag_map.items():
pattern = '|'.join(kws)
df[col] = df['temp_tags_joined'].str.contains(pattern, na=False, case=False, regex=True)
df['has_science'] = (
df['temp_tags_joined'].str.contains('science', na=False, case=False, regex=True) &
~df['temp_tags_joined'].str.contains('bigscience', na=False, case=False, regex=True)
)
del df['temp_tags_joined']
df['is_audio_speech'] = (df['has_audio'] | df['has_speech'] |
df['pipeline_tag'].str.contains('audio|speech', case=False, na=False, regex=True))
df['is_biomed'] = df['has_bio'] | df['has_med']
df['organization'] = df['id'].apply(extract_org_from_id)
if 'safetensors' in df.columns and \
not (output_filesize_col_name in df_raw.columns and pd.api.types.is_numeric_dtype(df_raw[output_filesize_col_name])):
df = df.drop(columns=['safetensors'], errors='ignore')
if force_refresh and 'has_robot' in df.columns:
robot_count_app_proc = df['has_robot'].sum()
print(f"DIAGNOSTIC (App - Force Refresh Processing): 'has_robot' column processed. Number of True values: {robot_count_app_proc}")
print(f"Data processing by Gradio completed in {time.time() - proc_start:.2f}s.")
total_elapsed = time.time() - overall_start_time
final_msg = f"{raw_data_source_msg}. Processing by Gradio took {time.time() - proc_start:.2f}s. Total: {total_elapsed:.2f}s. Shape: {df.shape}"
print(final_msg)
return df, True, final_msg
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, size_filter=None, skip_orgs=None):
if df is None or df.empty: return pd.DataFrame()
filtered_df = df.copy()
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot",
"Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science",
"Video": "has_video", "Images": "has_image", "Text": "has_text"}
if 'has_robot' in filtered_df.columns:
initial_robot_count = filtered_df['has_robot'].sum()
if tag_filter and tag_filter in col_map:
target_col = col_map[tag_filter]
if target_col in filtered_df.columns:
filtered_df = filtered_df[filtered_df[target_col]]
else:
print(f"Warning: Tag filter column '{col_map[tag_filter]}' not found in DataFrame.")
if pipeline_filter:
if "pipeline_tag" in filtered_df.columns:
filtered_df = filtered_df[filtered_df["pipeline_tag"] == pipeline_filter]
else:
print(f"Warning: 'pipeline_tag' column not found for filtering.")
if size_filter and size_filter != "None" and size_filter in MODEL_SIZE_RANGES.keys():
if 'size_category' in filtered_df.columns:
filtered_df = filtered_df[filtered_df['size_category'] == size_filter]
else:
print("Warning: 'size_category' column not found for filtering.")
if skip_orgs and len(skip_orgs) > 0:
if "organization" in filtered_df.columns:
filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
else:
print("Warning: 'organization' column not found for filtering.")
if filtered_df.empty: return pd.DataFrame()
if count_by not in filtered_df.columns or not pd.api.types.is_numeric_dtype(filtered_df[count_by]):
filtered_df[count_by] = pd.to_numeric(filtered_df.get(count_by), errors="coerce").fillna(0.0)
org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
top_orgs_list = org_totals.index.tolist()
treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
treemap_data["root"] = "models"
treemap_data[count_by] = pd.to_numeric(treemap_data[count_by], errors="coerce").fillna(0.0)
return treemap_data
def create_treemap(treemap_data, count_by, title=None):
if treemap_data.empty:
fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1])
fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
return fig
fig = px.treemap(
treemap_data, path=["root", "organization", "id"], values=count_by,
title=title or f"HuggingFace Models - {count_by.capitalize()} by Organization",
color_discrete_sequence=px.colors.qualitative.Plotly
)
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
return fig
with gr.Blocks(title="HuggingFace Model Explorer") as demo:
models_data_state = gr.State(pd.DataFrame())
loading_complete_state = gr.State(False)
with gr.Row():
gr.Markdown("# HuggingFace Models TreeMap Visualization")
with gr.Row():
with gr.Column(scale=1):
count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
size_filter_dropdown = gr.Dropdown(label="Model Size Filter", choices=["None"] + list(MODEL_SIZE_RANGES.keys()), value="None")
top_k_slider = gr.Slider(label="Number of Top Organizations", minimum=5, maximum=50, value=25, step=5)
skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
refresh_data_button = gr.Button(value="Refresh Data from Hugging Face", variant="secondary")
with gr.Column(scale=3):
plot_output = gr.Plot()
status_message_md = gr.Markdown("Initializing...")
data_info_md = gr.Markdown("")
def _update_button_interactivity(is_loaded_flag):
return gr.update(interactive=is_loaded_flag)
loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)
def _toggle_filters_visibility(choice):
return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")
filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown])
def ui_load_data_controller(force_refresh_ui_trigger=False, progress=gr.Progress(track_tqdm=True)):
print(f"ui_load_data_controller called with force_refresh_ui_trigger={force_refresh_ui_trigger}")
status_msg_ui = "Loading data..."
data_info_text = ""
current_df = pd.DataFrame()
load_success_flag = False
# data_as_of_date_display = "N/A" # Will be set inside the logic
try:
current_df, load_success_flag, status_msg_from_load = load_models_data(
force_refresh=force_refresh_ui_trigger, tqdm_cls=progress.tqdm if progress else tqdm
)
if load_success_flag:
# Default value for data_as_of_date_display
data_as_of_date_display = "Pre-processed (date unavailable or invalid)"
if force_refresh_ui_trigger: # Data was just fetched by Gradio
data_as_of_date_display = pd.Timestamp.now(tz='UTC').strftime('%B %d, %Y, %H:%M:%S %Z')
# If loaded from pre-processed parquet, check for its timestamp column
elif 'data_download_timestamp' in current_df.columns and not current_df.empty:
try:
# Step 1: Safely get the value from the DataFrame's first row for the timestamp column
raw_val_from_df = current_df['data_download_timestamp'].iloc[0]
# Step 2: Process if raw_val_from_df is a list/array
scalar_timestamp_val = None
if isinstance(raw_val_from_df, (list, tuple, np.ndarray)):
if len(raw_val_from_df) > 0:
scalar_timestamp_val = raw_val_from_df[0]
else:
scalar_timestamp_val = raw_val_from_df
# Step 3: Check for NA and convert the scalar value to datetime
if pd.notna(scalar_timestamp_val):
dt_obj = pd.to_datetime(scalar_timestamp_val)
if pd.notna(dt_obj):
if dt_obj.tzinfo is None:
dt_obj = dt_obj.tz_localize('UTC')
data_as_of_date_display = dt_obj.strftime('%B %d, %Y, %H:%M:%S %Z')
except IndexError:
print(f"DEBUG: IndexError encountered while processing 'data_download_timestamp'. DF empty: {current_df.empty}")
if 'data_download_timestamp' in current_df.columns and not current_df.empty:
print(f"DEBUG: Head of 'data_download_timestamp': {str(current_df['data_download_timestamp'].head(1))}") # Ensure string conversion for print
except Exception as e_ts_proc:
print(f"Error processing 'data_download_timestamp' from parquet: {e_ts_proc}")
# Build data info string
size_dist_lines = []
if 'size_category' in current_df.columns:
for cat in MODEL_SIZE_RANGES.keys():
count = (current_df['size_category'] == cat).sum()
size_dist_lines.append(f" - {cat}: {count:,} models")
else: size_dist_lines.append(" - Size category information not available.")
size_dist = "\n".join(size_dist_lines)
data_info_text = (f"### Data Information\n"
f"- Overall Status: {status_msg_from_load}\n"
f"- Total models loaded: {len(current_df):,}\n"
f"- Data as of: {data_as_of_date_display}\n"
f"- Size categories:\n{size_dist}")
if not current_df.empty and 'has_robot' in current_df.columns:
robot_true_count = current_df['has_robot'].sum()
data_info_text += f"\n- **Models flagged 'has_robot'**: {robot_true_count}"
if 0 < robot_true_count <= 10:
sample_robot_ids = current_df[current_df['has_robot']]['id'].head(5).tolist()
data_info_text += f"\n - Sample 'has_robot' model IDs: `{', '.join(sample_robot_ids)}`"
elif not current_df.empty:
data_info_text += "\n- **Models flagged 'has_robot'**: 'has_robot' column not found."
status_msg_ui = "Data loaded successfully. Ready to generate plot."
else: # load_success_flag is False
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
status_msg_ui = status_msg_from_load
except Exception as e:
status_msg_ui = f"An unexpected error occurred in ui_load_data_controller: {str(e)}"
data_info_text = f"### Critical Error\n- {status_msg_ui}"
print(f"Critical error in ui_load_data_controller: {e}") # This is the original error print
load_success_flag = False
return current_df, load_success_flag, data_info_text, status_msg_ui
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
size_choice, k_orgs, skip_orgs_input, df_current_models):
if df_current_models is None or df_current_models.empty:
empty_fig = create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded")
error_msg = "Model data is not loaded or is empty. Please load or refresh data first."
gr.Warning(error_msg)
return empty_fig, error_msg
tag_to_use = tag_choice if filter_type == "Tag Filter" else None
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
size_to_use = size_choice if size_choice != "None" else None
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()] if skip_orgs_input else []
treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, size_to_use, orgs_to_skip)
title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization"
plotly_fig = create_treemap(treemap_df, metric_choice, chart_title)
if treemap_df.empty:
plot_stats_md = "No data matches the selected filters. Try adjusting your filters."
else:
total_items_in_plot = len(treemap_df['id'].unique())
total_value_in_plot = treemap_df[metric_choice].sum()
plot_stats_md = (f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}")
return plotly_fig, plot_stats_md
demo.load(
fn=lambda progress=gr.Progress(track_tqdm=True): ui_load_data_controller(force_refresh_ui_trigger=False, progress=progress),
inputs=[],
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
)
refresh_data_button.click(
fn=lambda progress=gr.Progress(track_tqdm=True): ui_load_data_controller(force_refresh_ui_trigger=True, progress=progress),
inputs=[],
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
)
generate_plot_button.click(
fn=ui_generate_plot_controller,
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
size_filter_dropdown, top_k_slider, skip_orgs_textbox, models_data_state],
outputs=[plot_output, status_message_md]
)
if __name__ == "__main__":
if not os.path.exists(PROCESSED_PARQUET_FILE_PATH):
print(f"WARNING: Pre-processed data file '{PROCESSED_PARQUET_FILE_PATH}' not found.")
print("It is highly recommended to run the preprocessing script (preprocess.py) first.")
else:
print(f"Found pre-processed data file: '{PROCESSED_PARQUET_FILE_PATH}'.")
demo.launch()