File size: 31,401 Bytes
961c6fe
 
bbf45d0
 
 
 
caa5704
961c6fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbf45d0
 
961c6fe
 
 
 
 
 
 
 
 
 
bbf45d0
 
 
961c6fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caa5704
961c6fe
 
 
9c451ee
961c6fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caa5704
961c6fe
 
 
 
 
 
 
 
 
 
 
 
 
 
caa5704
961c6fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caa5704
961c6fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbf45d0
961c6fe
 
 
 
 
 
 
 
9c451ee
961c6fe
 
 
 
 
 
 
 
 
27c66d1
961c6fe
9c451ee
961c6fe
 
 
caa5704
961c6fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c451ee
961c6fe
 
 
 
 
 
 
 
 
27c66d1
961c6fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c451ee
 
 
 
961c6fe
 
9c451ee
 
961c6fe
98b7de8
961c6fe
9c451ee
961c6fe
 
bbf45d0
 
961c6fe
 
 
 
caa5704
98b7de8
961c6fe
98b7de8
961c6fe
 
 
 
 
 
 
 
caa5704
961c6fe
 
9c451ee
961c6fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27c66d1
bbf45d0
961c6fe
 
 
 
 
 
 
 
 
 
 
bbf45d0
961c6fe
 
 
 
 
 
 
 
bbf45d0
961c6fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c451ee
961c6fe
 
 
 
 
4d0811f
961c6fe
4d0811f
961c6fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c451ee
961c6fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbf45d0
961c6fe
 
 
 
 
 
 
 
caa5704
961c6fe
bbf45d0
 
961c6fe
bbf45d0
961c6fe
 
 
 
bbf45d0
 
 
961c6fe
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
# --- START OF FILE app.py ---

import json
import gradio as gr
import pandas as pd
import plotly.express as px
import os
import numpy as np # Make sure NumPy is imported
import duckdb
from tqdm.auto import tqdm # Standard tqdm for console, gr.Progress will track it
import time
import ast # For safely evaluating string representations of lists/dicts

# --- Constants ---
MODEL_SIZE_RANGES = {
    "Small (<1GB)": (0, 1), "Medium (1-5GB)": (1, 5), "Large (5-20GB)": (5, 20),
    "X-Large (20-50GB)": (20, 50), "XX-Large (>50GB)": (50, float('inf'))
}
PROCESSED_PARQUET_FILE_PATH = "models_processed.parquet"
HF_PARQUET_URL = 'https://huggingface.co/datasets/cfahlgren1/hub-stats/resolve/main/models.parquet'

TAG_FILTER_CHOICES = [
    "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images",
    "Text", "Biomedical", "Sciences"
]

PIPELINE_TAGS = [
 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation',
 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation',
 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition',
 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering',
 'image-feature-extraction', 'summarization', 'zero-shot-image-classification',
 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text',
 'audio-classification', 'visual-question-answering', 'text-to-video',
 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video',
 'multiple-choice', 'unconditional-image-generation', 'video-classification',
 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text',
 'table-question-answering',
]

# --- Utility Functions ---
def extract_model_size(safetensors_data): # Renamed for consistency if used, preprocessor uses extract_model_file_size_gb
    try:
        if pd.isna(safetensors_data): return 0.0
        data_to_parse = safetensors_data
        if isinstance(safetensors_data, str):
            try:
                if (safetensors_data.startswith('{') and safetensors_data.endswith('}')) or \
                   (safetensors_data.startswith('[') and safetensors_data.endswith(']')):
                    data_to_parse = ast.literal_eval(safetensors_data)
                else: data_to_parse = json.loads(safetensors_data)
            except: return 0.0
        if isinstance(data_to_parse, dict) and 'total' in data_to_parse:
            try:
                total_bytes_val = data_to_parse['total']
                size_bytes = float(total_bytes_val)
                return size_bytes / (1024 * 1024 * 1024)
            except (ValueError, TypeError): pass
        return 0.0
    except: return 0.0

def extract_org_from_id(model_id):
    if pd.isna(model_id): return "unaffiliated"
    model_id_str = str(model_id)
    return model_id_str.split("/")[0] if "/" in model_id_str else "unaffiliated"

# --- THIS IS THE CORRECTED process_tags_for_series from preprocess.py ---
def process_tags_for_series(series_of_tags_values, tqdm_cls=None): # Added tqdm_cls for Gradio progress
    processed_tags_accumulator = []
    
    # Determine the iterable (use tqdm if tqdm_cls is provided, else direct iteration)
    iterable = series_of_tags_values
    if tqdm_cls and tqdm_cls != tqdm : # Check if it's Gradio's progress tracker
        iterable = tqdm_cls(series_of_tags_values, desc="Standardizing Tags (App)", unit="row")
    elif tqdm_cls == tqdm: # For direct console tqdm if passed
        iterable = tqdm(series_of_tags_values, desc="Standardizing Tags (App)", unit="row", leave=False)


    for i, tags_value_from_series in enumerate(iterable):
        temp_processed_list_for_row = []
        current_value_for_error_msg = str(tags_value_from_series)[:200]

        try:
            if isinstance(tags_value_from_series, list):
                current_tags_in_list = []
                for tag_item in tags_value_from_series:
                    try:
                        if pd.isna(tag_item): continue
                        str_tag = str(tag_item)
                        stripped_tag = str_tag.strip()
                        if stripped_tag:
                            current_tags_in_list.append(stripped_tag)
                    except Exception as e_inner_list_proc:
                        print(f"APP ERROR processing item '{tag_item}' (type: {type(tag_item)}) within a list for row {i}. Error: {e_inner_list_proc}. Original: {current_value_for_error_msg}")
                temp_processed_list_for_row = current_tags_in_list

            elif isinstance(tags_value_from_series, np.ndarray):
                current_tags_in_list = []
                for tag_item in tags_value_from_series.tolist():
                    try:
                        if pd.isna(tag_item): continue
                        str_tag = str(tag_item)
                        stripped_tag = str_tag.strip()
                        if stripped_tag:
                            current_tags_in_list.append(stripped_tag)
                    except Exception as e_inner_array_proc:
                        print(f"APP ERROR processing item '{tag_item}' (type: {type(tag_item)}) within a NumPy array for row {i}. Error: {e_inner_array_proc}. Original: {current_value_for_error_msg}")
                temp_processed_list_for_row = current_tags_in_list
            
            elif tags_value_from_series is None or pd.isna(tags_value_from_series):
                temp_processed_list_for_row = []

            elif isinstance(tags_value_from_series, str):
                processed_str_tags = []
                if (tags_value_from_series.startswith('[') and tags_value_from_series.endswith(']')) or \
                   (tags_value_from_series.startswith('(') and tags_value_from_series.endswith(')')):
                    try:
                        evaluated_tags = ast.literal_eval(tags_value_from_series)
                        if isinstance(evaluated_tags, (list, tuple)):
                            current_eval_list = []
                            for tag_item in evaluated_tags:
                                if pd.isna(tag_item): continue
                                str_tag = str(tag_item).strip()
                                if str_tag: current_eval_list.append(str_tag)
                            processed_str_tags = current_eval_list
                    except (ValueError, SyntaxError):
                        pass 

                if not processed_str_tags:
                    try:
                        json_tags = json.loads(tags_value_from_series)
                        if isinstance(json_tags, list):
                            current_json_list = []
                            for tag_item in json_tags:
                                if pd.isna(tag_item): continue
                                str_tag = str(tag_item).strip()
                                if str_tag: current_json_list.append(str_tag)
                            processed_str_tags = current_json_list
                    except json.JSONDecodeError:
                        processed_str_tags = [tag.strip() for tag in tags_value_from_series.split(',') if tag.strip()]
                    except Exception as e_json_other:
                        print(f"APP ERROR during JSON processing for string '{current_value_for_error_msg}' for row {i}. Error: {e_json_other}")
                        processed_str_tags = [tag.strip() for tag in tags_value_from_series.split(',') if tag.strip()]

                temp_processed_list_for_row = processed_str_tags
            
            else: 
                if pd.isna(tags_value_from_series):
                     temp_processed_list_for_row = []
                else:
                    str_val = str(tags_value_from_series).strip()
                    temp_processed_list_for_row = [str_val] if str_val else []
            
            processed_tags_accumulator.append(temp_processed_list_for_row)

        except Exception as e_outer_tag_proc:
            print(f"APP CRITICAL UNHANDLED ERROR processing row {i}: value '{current_value_for_error_msg}' (type: {type(tags_value_from_series)}). Error: {e_outer_tag_proc}. Appending [].")
            processed_tags_accumulator.append([])
            
    return processed_tags_accumulator
# --- END OF CORRECTED process_tags_for_series ---


def load_models_data(force_refresh=False, tqdm_cls=None): # tqdm_cls for Gradio progress
    # ... (initial part of load_models_data for loading pre-processed parquet is the same) ...
    if tqdm_cls is None: tqdm_cls = tqdm # Default to standard tqdm if None
    overall_start_time = time.time()
    print(f"Gradio load_models_data called with force_refresh={force_refresh}")

    expected_cols_in_processed_parquet = [
        'id', 'downloads', 'downloadsAllTime', 'likes', 'pipeline_tag', 'tags', 'params',
        'size_category', 'organization', 'has_audio', 'has_speech', 'has_music',
        'has_robot', 'has_bio', 'has_med', 'has_series', 'has_video', 'has_image',
        'has_text', 'has_science', 'is_audio_speech', 'is_biomed',
        'data_download_timestamp'
    ]

    if not force_refresh and os.path.exists(PROCESSED_PARQUET_FILE_PATH):
        print(f"Attempting to load pre-processed data from: {PROCESSED_PARQUET_FILE_PATH}")
        try:
            df = pd.read_parquet(PROCESSED_PARQUET_FILE_PATH)
            elapsed = time.time() - overall_start_time
            missing_cols = [col for col in expected_cols_in_processed_parquet if col not in df.columns]
            if missing_cols:
                raise ValueError(f"Pre-processed Parquet is missing columns: {missing_cols}. Please run preprocessor or refresh data in app.")
            
            if 'has_robot' in df.columns:
                robot_count_parquet = df['has_robot'].sum()
                print(f"DIAGNOSTIC (App - Parquet Load): 'has_robot' column found. Number of True values: {robot_count_parquet}")
            else:
                print("DIAGNOSTIC (App - Parquet Load): 'has_robot' column NOT FOUND.")

            msg = f"Successfully loaded pre-processed data in {elapsed:.2f}s. Shape: {df.shape}"
            print(msg)
            return df, True, msg
        except Exception as e:
            print(f"Could not load pre-processed Parquet: {e}. ")
            if force_refresh: print("Proceeding to fetch fresh data as force_refresh=True.")
            else:
                 err_msg = (f"Pre-processed data could not be loaded: {e}. "
                           "Please use 'Refresh Data from Hugging Face' button.")
                 return pd.DataFrame(), False, err_msg

    df_raw = None
    raw_data_source_msg = ""
    if force_refresh:
        print("force_refresh=True (Gradio). Fetching fresh data...")
        fetch_start = time.time()
        try:
            query = f"SELECT * FROM read_parquet('{HF_PARQUET_URL}')"
            df_raw = duckdb.sql(query).df()
            if df_raw is None or df_raw.empty: raise ValueError("Fetched data is empty or None.")
            raw_data_source_msg = f"Fetched by Gradio in {time.time() - fetch_start:.2f}s. Rows: {len(df_raw)}"
            print(raw_data_source_msg)
        except Exception as e_hf:
            return pd.DataFrame(), False, f"Fatal error fetching from Hugging Face (Gradio): {e_hf}"
    else: 
        err_msg = (f"Pre-processed data '{PROCESSED_PARQUET_FILE_PATH}' not found/invalid. "
                   "Run preprocessor or use 'Refresh Data' button.")
        return pd.DataFrame(), False, err_msg

    print(f"Initiating processing for data newly fetched by Gradio. {raw_data_source_msg}")
    df = pd.DataFrame() # This will be our processed DataFrame
    proc_start = time.time()
    
    core_cols = {'id': str, 'downloads': float, 'downloadsAllTime': float, 'likes': float,
                 'pipeline_tag': str, 'tags': object, 'safetensors': object}
    for col, dtype in core_cols.items():
        if col in df_raw.columns:
            df[col] = df_raw[col] # Assign raw data first
            if dtype == float: df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0.0)
            elif dtype == str: df[col] = df[col].astype(str).fillna('')
            # For 'tags' and 'safetensors' (object type), no specific conversion here, done later
        else: # If column is missing in raw data
            if col in ['downloads', 'downloadsAllTime', 'likes']: df[col] = 0.0
            elif col == 'pipeline_tag': df[col] = ''
            elif col == 'tags': df[col] = pd.Series([[] for _ in range(len(df_raw))]) # Default to empty lists
            elif col == 'safetensors': df[col] = None # Default to None
            elif col == 'id': return pd.DataFrame(), False, "Critical: 'id' column missing."
    
    output_filesize_col_name = 'params'
    if output_filesize_col_name in df_raw.columns and pd.api.types.is_numeric_dtype(df_raw[output_filesize_col_name]):
        df[output_filesize_col_name] = pd.to_numeric(df_raw[output_filesize_col_name], errors='coerce').fillna(0.0)
    elif 'safetensors' in df.columns:
        # Use tqdm_cls for progress tracking if available (Gradio's gr.Progress.tqdm)
        safetensors_iter = df['safetensors']
        if tqdm_cls and tqdm_cls != tqdm: # Check if it's Gradio's progress tracker
             safetensors_iter = tqdm_cls(df['safetensors'], desc="Extracting model sizes (GB)", unit="row")
        elif tqdm_cls == tqdm: # For direct console tqdm if passed
            safetensors_iter = tqdm(df['safetensors'], desc="Extracting model sizes (GB)", unit="row", leave=False)
            
        df[output_filesize_col_name] = [extract_model_size(s) for s in safetensors_iter]
        df[output_filesize_col_name] = pd.to_numeric(df[output_filesize_col_name], errors='coerce').fillna(0.0)
    else:
        df[output_filesize_col_name] = 0.0

    def get_size_category_gradio(size_gb_val):
        try: numeric_size_gb = float(size_gb_val)
        except (ValueError, TypeError): numeric_size_gb = 0.0
        if pd.isna(numeric_size_gb): numeric_size_gb = 0.0
        if 0 <= numeric_size_gb < 1: return "Small (<1GB)"
        elif 1 <= numeric_size_gb < 5: return "Medium (1-5GB)"
        elif 5 <= numeric_size_gb < 20: return "Large (5-20GB)"
        elif 20 <= numeric_size_gb < 50: return "X-Large (20-50GB)"
        elif numeric_size_gb >= 50: return "XX-Large (>50GB)"
        else: return "Small (<1GB)" # Default
    df['size_category'] = df[output_filesize_col_name].apply(get_size_category_gradio)

    # >>> USE THE CORRECTED process_tags_for_series HERE <<<
    df['tags'] = process_tags_for_series(df['tags'], tqdm_cls=tqdm_cls) 
    
    df['temp_tags_joined'] = df['tags'].apply(
        lambda tl: '~~~'.join(str(t).lower().strip() for t in tl if pd.notna(t) and str(t).strip()) if isinstance(tl, list) else ''
    )
    tag_map = {
        'has_audio': ['audio'], 'has_speech': ['speech'], 'has_music': ['music'],
        'has_robot': ['robot', 'robotics'], 
        'has_bio': ['bio'], 'has_med': ['medic', 'medical'],
        'has_series': ['series', 'time-series', 'timeseries'],
        'has_video': ['video'], 'has_image': ['image', 'vision'],
        'has_text': ['text', 'nlp', 'llm']
    }
    for col, kws in tag_map.items():
        pattern = '|'.join(kws)
        df[col] = df['temp_tags_joined'].str.contains(pattern, na=False, case=False, regex=True)
    df['has_science'] = (
        df['temp_tags_joined'].str.contains('science', na=False, case=False, regex=True) &
        ~df['temp_tags_joined'].str.contains('bigscience', na=False, case=False, regex=True)
    )
    del df['temp_tags_joined']
    df['is_audio_speech'] = (df['has_audio'] | df['has_speech'] |
                            df['pipeline_tag'].str.contains('audio|speech', case=False, na=False, regex=True))
    df['is_biomed'] = df['has_bio'] | df['has_med']
    df['organization'] = df['id'].apply(extract_org_from_id)

    # Drop safetensors if params was calculated from it, and params didn't pre-exist as numeric
    if 'safetensors' in df.columns and \
       not (output_filesize_col_name in df_raw.columns and pd.api.types.is_numeric_dtype(df_raw[output_filesize_col_name])):
        df = df.drop(columns=['safetensors'], errors='ignore')
    
    if force_refresh and 'has_robot' in df.columns:
        robot_count_app_proc = df['has_robot'].sum()
        print(f"DIAGNOSTIC (App - Force Refresh Processing): 'has_robot' column processed. Number of True values: {robot_count_app_proc}")

    print(f"Data processing by Gradio completed in {time.time() - proc_start:.2f}s.")
    
    total_elapsed = time.time() - overall_start_time
    final_msg = f"{raw_data_source_msg}. Processing by Gradio took {time.time() - proc_start:.2f}s. Total: {total_elapsed:.2f}s. Shape: {df.shape}"
    print(final_msg)
    return df, True, final_msg


# ... (make_treemap_data, create_treemap functions remain unchanged) ...
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, size_filter=None, skip_orgs=None):
    if df is None or df.empty: return pd.DataFrame()
    filtered_df = df.copy()
    col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot",
                "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science",
                "Video": "has_video", "Images": "has_image", "Text": "has_text"}
    
    if 'has_robot' in filtered_df.columns:
        initial_robot_count = filtered_df['has_robot'].sum()
        # print(f"DIAGNOSTIC (make_treemap_data entry): Input df has {initial_robot_count} 'has_robot' models.") # Can be noisy
    # else:
        # print("DIAGNOSTIC (make_treemap_data entry): 'has_robot' column NOT in input df.")

    if tag_filter and tag_filter in col_map:
        target_col = col_map[tag_filter]
        if target_col in filtered_df.columns:
            # if tag_filter == "Robotics":
                # count_before_robot_filter = filtered_df[target_col].sum()
                # print(f"DIAGNOSTIC (make_treemap_data): Applying 'Robotics' filter. Models with '{target_col}'=True: {count_before_robot_filter}")
            filtered_df = filtered_df[filtered_df[target_col]]
            # if tag_filter == "Robotics":
                 # print(f"DIAGNOSTIC (make_treemap_data): After 'Robotics' filter ({target_col}), df rows: {len(filtered_df)}")
        else:
            print(f"Warning: Tag filter column '{col_map[tag_filter]}' not found in DataFrame.")
    if pipeline_filter:
        if "pipeline_tag" in filtered_df.columns:
            filtered_df = filtered_df[filtered_df["pipeline_tag"] == pipeline_filter]
        else:
            print(f"Warning: 'pipeline_tag' column not found for filtering.")
    if size_filter and size_filter != "None" and size_filter in MODEL_SIZE_RANGES.keys():
        if 'size_category' in filtered_df.columns:
            filtered_df = filtered_df[filtered_df['size_category'] == size_filter]
        else:
            print("Warning: 'size_category' column not found for filtering.")
    if skip_orgs and len(skip_orgs) > 0:
        if "organization" in filtered_df.columns:
            filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
        else:
            print("Warning: 'organization' column not found for filtering.")
    if filtered_df.empty: return pd.DataFrame()
    # Ensure count_by column is numeric, coercing if necessary
    if count_by not in filtered_df.columns or not pd.api.types.is_numeric_dtype(filtered_df[count_by]):
        # print(f"Warning: Column '{count_by}' for treemap values is not numeric or missing. Coercing to numeric, filling NaNs with 0.")
        filtered_df[count_by] = pd.to_numeric(filtered_df.get(count_by), errors="coerce").fillna(0.0)
        
    org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first') # Default keep='first'
    top_orgs_list = org_totals.index.tolist()
    treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
    treemap_data["root"] = "models" # For treemap structure
    treemap_data[count_by] = pd.to_numeric(treemap_data[count_by], errors="coerce").fillna(0.0) # Ensure numeric again after subsetting
    return treemap_data

def create_treemap(treemap_data, count_by, title=None):
    if treemap_data.empty:
        fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1]) # Placeholder for empty data
        fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
        return fig
    fig = px.treemap(
        treemap_data, path=["root", "organization", "id"], values=count_by,
        title=title or f"HuggingFace Models - {count_by.capitalize()} by Organization",
        color_discrete_sequence=px.colors.qualitative.Plotly # Example color sequence
    )
    fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
    fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
    return fig

# --- Gradio UI and Controllers ---
with gr.Blocks(title="HuggingFace Model Explorer") as demo:
    models_data_state = gr.State(pd.DataFrame())
    loading_complete_state = gr.State(False) # To control button interactivity

    with gr.Row():
        gr.Markdown("# HuggingFace Models TreeMap Visualization")
    with gr.Row():
        with gr.Column(scale=1): # Controls column
            count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
            filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
            tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
            pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
            size_filter_dropdown = gr.Dropdown(label="Model Size Filter", choices=["None"] + list(MODEL_SIZE_RANGES.keys()), value="None")
            top_k_slider = gr.Slider(label="Number of Top Organizations", minimum=5, maximum=50, value=25, step=5)
            skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski") # Common large orgs
            
            generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False) # Starts disabled
            refresh_data_button = gr.Button(value="Refresh Data from Hugging Face", variant="secondary")

        with gr.Column(scale=3): # Plot and info column
            plot_output = gr.Plot()
            status_message_md = gr.Markdown("Initializing...") # For general status updates
            data_info_md = gr.Markdown("") # For detailed data stats

    # Enable generate button only after data is loaded
    def _update_button_interactivity(is_loaded_flag):
        return gr.update(interactive=is_loaded_flag)
    loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)

    # Show/hide tag/pipeline filters based on radio choice
    def _toggle_filters_visibility(choice):
        return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")
    filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown])


    def ui_load_data_controller(force_refresh_ui_trigger=False, progress=gr.Progress(track_tqdm=True)): # Gradio progress tracker
        print(f"ui_load_data_controller called with force_refresh_ui_trigger={force_refresh_ui_trigger}")
        status_msg_ui = "Loading data..."
        data_info_text = ""
        current_df = pd.DataFrame()
        load_success_flag = False
        data_as_of_date_display = "N/A"

        try:
            # Pass gr.Progress.tqdm to load_models_data if it's a Gradio call
            current_df, load_success_flag, status_msg_from_load = load_models_data(
                force_refresh=force_refresh_ui_trigger, tqdm_cls=progress.tqdm if progress else tqdm
            )

            if load_success_flag:
                if force_refresh_ui_trigger: # Data was just fetched by Gradio
                    data_as_of_date_display = pd.Timestamp.now(tz='UTC').strftime('%B %d, %Y, %H:%M:%S %Z')
                # If loaded from pre-processed parquet, check for its timestamp column
                elif 'data_download_timestamp' in current_df.columns and not current_df.empty and pd.notna(current_df['data_download_timestamp'].iloc[0]):
                    timestamp_from_parquet = pd.to_datetime(current_df['data_download_timestamp'].iloc[0])
                    if timestamp_from_parquet.tzinfo is None: # If no timezone, assume UTC from preprocessor
                        timestamp_from_parquet = timestamp_from_parquet.tz_localize('UTC')
                    data_as_of_date_display = timestamp_from_parquet.strftime('%B %d, %Y, %H:%M:%S %Z')
                else: # Pre-processed data but no timestamp column or it's NaT
                    data_as_of_date_display = "Pre-processed (date unavailable)"

                # Build data info string
                size_dist_lines = []
                if 'size_category' in current_df.columns:
                    for cat in MODEL_SIZE_RANGES.keys():
                        count = (current_df['size_category'] == cat).sum()
                        size_dist_lines.append(f"  - {cat}: {count:,} models")
                else: size_dist_lines.append("  - Size category information not available.")
                size_dist = "\n".join(size_dist_lines)

                data_info_text = (f"### Data Information\n"
                                  f"- Overall Status: {status_msg_from_load}\n" 
                                  f"- Total models loaded: {len(current_df):,}\n"
                                  f"- Data as of: {data_as_of_date_display}\n"
                                  f"- Size categories:\n{size_dist}")
                
                if not current_df.empty and 'has_robot' in current_df.columns:
                    robot_true_count = current_df['has_robot'].sum()
                    data_info_text += f"\n- **Models flagged 'has_robot'**: {robot_true_count}"
                    if 0 < robot_true_count <= 10:
                        sample_robot_ids = current_df[current_df['has_robot']]['id'].head(5).tolist()
                        data_info_text += f"\n  - Sample 'has_robot' model IDs: `{', '.join(sample_robot_ids)}`"
                elif not current_df.empty:
                    data_info_text += "\n- **Models flagged 'has_robot'**: 'has_robot' column not found."

                status_msg_ui = "Data loaded successfully. Ready to generate plot."
            else: # load_success_flag is False
                data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
                status_msg_ui = status_msg_from_load # Pass error message from load_models_data
        
        except Exception as e:
            status_msg_ui = f"An unexpected error occurred in ui_load_data_controller: {str(e)}"
            data_info_text = f"### Critical Error\n- {status_msg_ui}"
            print(f"Critical error in ui_load_data_controller: {e}")
            load_success_flag = False # Ensure this is false on error

        return current_df, load_success_flag, data_info_text, status_msg_ui

    def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice, 
                                   size_choice, k_orgs, skip_orgs_input, df_current_models):
        if df_current_models is None or df_current_models.empty:
            empty_fig = create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded")
            error_msg = "Model data is not loaded or is empty. Please load or refresh data first."
            gr.Warning(error_msg) # Display a Gradio warning
            return empty_fig, error_msg

        tag_to_use = tag_choice if filter_type == "Tag Filter" else None
        pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
        size_to_use = size_choice if size_choice != "None" else None # Handle "None" string
        orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()] if skip_orgs_input else []

        # if 'has_robot' in df_current_models.columns:
        #     robot_count_before_treemap = df_current_models['has_robot'].sum()
            # print(f"DIAGNOSTIC (ui_generate_plot_controller): df_current_models entering make_treemap_data has {robot_count_before_treemap} 'has_robot' models.")

        treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, size_to_use, orgs_to_skip)
        
        title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
        chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization"
        plotly_fig = create_treemap(treemap_df, metric_choice, chart_title)

        if treemap_df.empty:
            plot_stats_md = "No data matches the selected filters. Try adjusting your filters."
        else:
            total_items_in_plot = len(treemap_df['id'].unique()) # Count unique models in plot
            total_value_in_plot = treemap_df[metric_choice].sum() # Sum of metric in plot
            plot_stats_md = (f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}")
        
        return plotly_fig, plot_stats_md

    # --- Event Handlers ---
    # Initial data load on app start
    demo.load(
        fn=lambda progress=gr.Progress(track_tqdm=True): ui_load_data_controller(force_refresh_ui_trigger=False, progress=progress),
        inputs=[], # No inputs for initial load
        outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
    )

    # Refresh data button
    refresh_data_button.click(
        fn=lambda progress=gr.Progress(track_tqdm=True): ui_load_data_controller(force_refresh_ui_trigger=True, progress=progress),
        inputs=[], 
        outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
    )

    # Generate plot button
    generate_plot_button.click(
        fn=ui_generate_plot_controller,
        inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
                size_filter_dropdown, top_k_slider, skip_orgs_textbox, models_data_state],
        outputs=[plot_output, status_message_md] # Update plot and status message
    )

if __name__ == "__main__":
    if not os.path.exists(PROCESSED_PARQUET_FILE_PATH):
        print(f"WARNING: Pre-processed data file '{PROCESSED_PARQUET_FILE_PATH}' not found.")
        print("It is highly recommended to run the preprocessing script (preprocess.py) first.")
    else:
        print(f"Found pre-processed data file: '{PROCESSED_PARQUET_FILE_PATH}'.")
    demo.launch()
# --- END OF FILE app.py ---