# --- START OF FINAL, POLISHED FILE app.py --- import gradio as gr import pandas as pd import plotly.express as px import time from datasets import load_dataset # Using the stable, community-built RangeSlider component from gradio_rangeslider import RangeSlider # --- Constants --- PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B'] PARAM_CHOICES_DEFAULT_INDICES = (0, len(PARAM_CHOICES) - 1) TOP_K_CHOICES = list(range(5, 51, 5)) HF_DATASET_ID = "evijit/modelverse_daily_data" TAG_FILTER_CHOICES = [ "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images", "Text", "Biomedical", "Sciences" ] PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering' ] def load_models_data(): overall_start_time = time.time() print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}") try: dataset_dict = load_dataset(HF_DATASET_ID) df = dataset_dict[list(dataset_dict.keys())[0]].to_pandas() if 'params' in df.columns: df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(0) else: df['params'] = 0 msg = f"Successfully loaded dataset in {time.time() - overall_start_time:.2f}s." print(msg) return df, True, msg except Exception as e: err_msg = f"Failed to load dataset. Error: {e}" print(err_msg) return pd.DataFrame(), False, err_msg def get_param_range_values(param_range_labels): min_label, max_label = param_range_labels min_val = 0.0 if '<' in min_label else float(min_label.replace('B', '')) max_val = float('inf') if '>' in max_label else float(max_label.replace('B', '')) return min_val, max_val def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None): if df is None or df.empty: return pd.DataFrame() filtered_df = df.copy() col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot", "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science", "Video": "has_video", "Images": "has_image", "Text": "has_text" } if tag_filter and tag_filter in col_map and col_map[tag_filter] in filtered_df.columns: filtered_df = filtered_df[filtered_df[col_map[tag_filter]]] if pipeline_filter and "pipeline_tag" in filtered_df.columns: filtered_df = filtered_df[filtered_df["pipeline_tag"].astype(str) == pipeline_filter] if param_range: min_params, max_params = get_param_range_values(param_range) is_default_range = (param_range[0] == PARAM_CHOICES[0] and param_range[1] == PARAM_CHOICES[-1]) if not is_default_range and 'params' in filtered_df.columns: if min_params is not None: filtered_df = filtered_df[filtered_df['params'] >= min_params] if max_params is not None and max_params != float('inf'): filtered_df = filtered_df[filtered_df['params'] < max_params] if skip_orgs and len(skip_orgs) > 0 and "organization" in filtered_df.columns: filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)] if filtered_df.empty: return pd.DataFrame() if count_by not in filtered_df.columns: filtered_df[count_by] = 0.0 filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors='coerce').fillna(0.0) org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first') top_orgs_list = org_totals.index.tolist() treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy() treemap_data["root"] = "models" return treemap_data def create_treemap(treemap_data, count_by, title=None): if treemap_data.empty: fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1]) fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25)) return fig fig = px.treemap(treemap_data, path=["root", "organization", "id"], values=count_by, title=title, color_discrete_sequence=px.colors.qualitative.Plotly) fig.update_layout(margin=dict(t=50, l=25, r=25, b=25)) fig.update_traces(textinfo="label+value+percent root", hovertemplate="%{label}
%{value:,} " + count_by + "
%{percentRoot:.2%} of total") return fig # --- FINAL, CORRECTED CSS --- custom_css = """ /* Hide the extra UI elements from the RangeSlider component */ #param-slider-wrapper .head, #param-slider-wrapper div[data-testid="range-slider"] > span { display: none !important; } /* THIS IS THE KEY FIX: We target all the individual component containers (divs with class .block) that are *direct children* of our custom-classed group. This removes the "box-in-a-box" effect by making the inner component containers transparent. The parent gr.Group now acts as the single card, which is exactly what we want. */ .model-parameters-group > .block { background: none !important; border: none !important; box-shadow: none !important; } """ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css) as demo: models_data_state = gr.State(pd.DataFrame()) loading_complete_state = gr.State(False) with gr.Row(): gr.Markdown("# 🤗 ModelVerse Explorer") with gr.Row(): with gr.Column(scale=1): # This section remains un-grouped for a consistent flat look count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads") filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None") tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False) pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False) # This group's styling will be modified by the custom CSS with gr.Group(elem_classes="model-parameters-group"): gr.Markdown("
Model Parameters
") param_range_slider = RangeSlider( minimum=0, maximum=len(PARAM_CHOICES) - 1, value=PARAM_CHOICES_DEFAULT_INDICES, step=1, label=None, show_label=False, elem_id="param-slider-wrapper" ) param_range_display = gr.Markdown(f"Range: `{PARAM_CHOICES[0]}` to `{PARAM_CHOICES[-1]}`") # This section remains un-grouped top_k_dropdown = gr.Dropdown(label="Number of Top Organizations", choices=TOP_K_CHOICES, value=25) skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski") generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False) with gr.Column(scale=3): plot_output = gr.Plot() status_message_md = gr.Markdown("Initializing...") data_info_md = gr.Markdown("") def update_param_display(value: tuple): min_idx, max_idx = int(value[0]), int(value[1]) return f"Range: `{PARAM_CHOICES[min_idx]}` to `{PARAM_CHOICES[max_idx]}`" param_range_slider.change(update_param_display, param_range_slider, param_range_display) def _update_button_interactivity(is_loaded_flag): return gr.update(interactive=is_loaded_flag) loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button) def _toggle_filters_visibility(choice): return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter") filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown]) def ui_load_data_controller(progress=gr.Progress()): progress(0, desc=f"Loading dataset '{HF_DATASET_ID}'...") try: current_df, load_success_flag, status_msg_from_load = load_models_data() if load_success_flag: progress(0.9, desc="Processing data...") date_display = "Pre-processed (date unavailable)" if 'data_download_timestamp' in current_df.columns and pd.notna(current_df['data_download_timestamp'].iloc[0]): ts = pd.to_datetime(current_df['data_download_timestamp'].iloc[0], utc=True) date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z') param_count = (current_df['params'] > 0).sum() if 'params' in current_df.columns else 0 data_info_text = f"### Data Information\n- Source: `{HF_DATASET_ID}`\n- Status: {status_msg_from_load}\n- Total models loaded: {len(current_df):,}\n- Models with parameter counts: {param_count:,}\n- Data as of: {date_display}\n" status_msg_ui = "Data loaded. Ready to generate plot." else: data_info_text = f"### Data Load Failed\n- {status_msg_from_load}" status_msg_ui = status_msg_from_load except Exception as e: status_msg_ui = f"An unexpected error occurred: {str(e)}" data_info_text = f"### Critical Error\n- {status_msg_ui}" load_success_flag = False print(f"Critical error in ui_load_data_controller: {e}") return current_df, load_success_flag, data_info_text, status_msg_ui def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice, param_range_indices, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()): if df_current_models is None or df_current_models.empty: return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded." progress(0.1, desc="Preparing data...") tag_to_use = tag_choice if filter_type == "Tag Filter" else None pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()] min_label = PARAM_CHOICES[int(param_range_indices[0])] max_label = PARAM_CHOICES[int(param_range_indices[1])] param_labels_for_filtering = [min_label, max_label] treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, param_labels_for_filtering, orgs_to_skip) progress(0.7, desc="Generating plot...") title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"} chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization" plotly_fig = create_treemap(treemap_df, metric_choice, chart_title) if treemap_df.empty: plot_stats_md = "No data matches the selected filters. Please try different options." else: total_items_in_plot = len(treemap_df['id'].unique()) total_value_in_plot = treemap_df[metric_choice].sum() plot_stats_md = f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}" return plotly_fig, plot_stats_md demo.load( fn=ui_load_data_controller, inputs=[], outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md] ) generate_plot_button.click( fn=ui_generate_plot_controller, inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown, param_range_slider, top_k_dropdown, skip_orgs_textbox, models_data_state], outputs=[plot_output, status_message_md] ) if __name__ == "__main__": print(f"Application starting...") demo.queue().launch() # --- END OF FINAL, POLISHED FILE app.py ---