Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,70 @@
|
|
1 |
-
# --- START OF FINAL POLISHED FILE app.py ---
|
2 |
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
import plotly.express as px
|
6 |
import time
|
|
|
7 |
from datasets import load_dataset
|
8 |
-
from gradio_rangeslider import RangeSlider
|
9 |
|
10 |
# --- Constants ---
|
11 |
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B']
|
12 |
-
|
|
|
13 |
|
14 |
TOP_K_CHOICES = list(range(5, 51, 5))
|
15 |
HF_DATASET_ID = "evijit/orgstats_daily_data"
|
16 |
TAG_FILTER_CHOICES = [ "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images", "Text", "Biomedical", "Sciences" ]
|
17 |
PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering' ]
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def load_models_data():
|
21 |
overall_start_time = time.time()
|
@@ -31,9 +80,7 @@ def load_models_data():
|
|
31 |
print(msg)
|
32 |
return df, True, msg
|
33 |
except Exception as e:
|
34 |
-
|
35 |
-
print(err_msg)
|
36 |
-
return pd.DataFrame(), False, err_msg
|
37 |
|
38 |
def get_param_range_values(param_range_labels):
|
39 |
min_label, max_label = param_range_labels
|
@@ -76,11 +123,15 @@ def create_treemap(treemap_data, count_by, title=None):
|
|
76 |
fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
|
77 |
return fig
|
78 |
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
80 |
models_data_state = gr.State(pd.DataFrame())
|
81 |
loading_complete_state = gr.State(False)
|
82 |
|
83 |
-
# --- FIX 1: The application title is restored here ---
|
84 |
with gr.Row():
|
85 |
gr.Markdown("# 🤗 ModelVerse Explorer")
|
86 |
|
@@ -91,16 +142,26 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True) as demo:
|
|
91 |
tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
|
92 |
pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
top_k_dropdown = gr.Dropdown(label="Number of Top Organizations", choices=TOP_K_CHOICES, value=25)
|
105 |
skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
|
106 |
generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
|
@@ -109,12 +170,6 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True) as demo:
|
|
109 |
plot_output = gr.Plot()
|
110 |
status_message_md = gr.Markdown("Initializing...")
|
111 |
data_info_md = gr.Markdown("")
|
112 |
-
|
113 |
-
def update_param_display(value: tuple):
|
114 |
-
min_idx, max_idx = int(value[0]), int(value[1])
|
115 |
-
return f"Range: `{PARAM_CHOICES[min_idx]}` to `{PARAM_CHOICES[max_idx]}`"
|
116 |
-
|
117 |
-
param_range_slider.change(update_param_display, param_range_slider, param_range_display)
|
118 |
|
119 |
def _update_button_interactivity(is_loaded_flag): return gr.update(interactive=is_loaded_flag)
|
120 |
loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)
|
@@ -139,14 +194,11 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True) as demo:
|
|
139 |
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
|
140 |
status_msg_ui = status_msg_from_load
|
141 |
except Exception as e:
|
142 |
-
status_msg_ui = f"An unexpected error occurred: {str(e)}"
|
143 |
-
data_info_text = f"### Critical Error\n- {status_msg_ui}"
|
144 |
-
load_success_flag = False
|
145 |
-
print(f"Critical error in ui_load_data_controller: {e}")
|
146 |
return current_df, load_success_flag, data_info_text, status_msg_ui
|
147 |
|
148 |
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
|
149 |
-
|
150 |
if df_current_models is None or df_current_models.empty:
|
151 |
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded."
|
152 |
|
@@ -155,6 +207,7 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True) as demo:
|
|
155 |
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
|
156 |
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()]
|
157 |
|
|
|
158 |
min_label = PARAM_CHOICES[int(param_range_indices[0])]
|
159 |
max_label = PARAM_CHOICES[int(param_range_indices[1])]
|
160 |
param_labels_for_filtering = [min_label, max_label]
|
@@ -174,16 +227,18 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True) as demo:
|
|
174 |
plot_stats_md = f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}"
|
175 |
return plotly_fig, plot_stats_md
|
176 |
|
|
|
177 |
demo.load(
|
178 |
fn=ui_load_data_controller,
|
179 |
inputs=[],
|
180 |
-
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
|
|
|
181 |
)
|
182 |
|
183 |
generate_plot_button.click(
|
184 |
fn=ui_generate_plot_controller,
|
185 |
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
|
186 |
-
|
187 |
outputs=[plot_output, status_message_md]
|
188 |
)
|
189 |
|
@@ -191,4 +246,4 @@ if __name__ == "__main__":
|
|
191 |
print(f"Application starting...")
|
192 |
demo.queue().launch()
|
193 |
|
194 |
-
# --- END OF FINAL POLISHED FILE app.py ---
|
|
|
1 |
+
# --- START OF FINAL, POLISHED FILE app.py ---
|
2 |
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
import plotly.express as px
|
6 |
import time
|
7 |
+
import json
|
8 |
from datasets import load_dataset
|
|
|
9 |
|
10 |
# --- Constants ---
|
11 |
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B']
|
12 |
+
# This hidden textbox will store the slider's state as a JSON string
|
13 |
+
PARAM_STATE_DEFAULT_JSON = json.dumps([0, len(PARAM_CHOICES) - 1])
|
14 |
|
15 |
TOP_K_CHOICES = list(range(5, 51, 5))
|
16 |
HF_DATASET_ID = "evijit/orgstats_daily_data"
|
17 |
TAG_FILTER_CHOICES = [ "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images", "Text", "Biomedical", "Sciences" ]
|
18 |
PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering' ]
|
19 |
|
20 |
+
# --- Custom HTML, CSS, and JavaScript for the Slider ---
|
21 |
+
custom_slider_js = """
|
22 |
+
function createCustomSlider() {{
|
23 |
+
const paramChoices = {js_param_choices};
|
24 |
+
const slider = document.getElementById('noui-slider-container');
|
25 |
+
if (slider.noUiSlider) {{ return; }} // Don't re-create if it already exists
|
26 |
+
|
27 |
+
noUiSlider.create(slider, {{
|
28 |
+
start: [0, paramChoices.length - 1],
|
29 |
+
connect: true,
|
30 |
+
step: 1,
|
31 |
+
range: {{ 'min': 0, 'max': paramChoices.length - 1 }},
|
32 |
+
pips: {{
|
33 |
+
mode: 'values',
|
34 |
+
values: Array.from(Array(paramChoices.length).keys()),
|
35 |
+
density: 100 / (paramChoices.length - 1),
|
36 |
+
format: {{ to: function(value) {{ return paramChoices[value]; }} }}
|
37 |
+
}}
|
38 |
+
}});
|
39 |
+
|
40 |
+
const paramRangeStateInput = document.querySelector('#param-range-state-js textarea');
|
41 |
+
const resetBtn = document.getElementById('reset-params-btn');
|
42 |
+
const initialRange = [0, paramChoices.length - 1];
|
43 |
+
|
44 |
+
function update(values) {{
|
45 |
+
const intValues = values.map(v => parseInt(v, 10));
|
46 |
+
const isDefault = intValues[0] === initialRange[0] && intValues[1] === initialRange[1];
|
47 |
+
|
48 |
+
// Show/hide reset button
|
49 |
+
resetBtn.style.display = isDefault ? 'none' : 'inline-block';
|
50 |
+
|
51 |
+
// Update hidden state for Python
|
52 |
+
const newValue = JSON.stringify(intValues);
|
53 |
+
if (paramRangeStateInput.value !== newValue) {{
|
54 |
+
paramRangeStateInput.value = newValue;
|
55 |
+
const event = new Event('input', {{ bubbles: true }});
|
56 |
+
paramRangeStateInput.dispatchEvent(event);
|
57 |
+
}}
|
58 |
+
}}
|
59 |
+
|
60 |
+
slider.noUiSlider.on('update', update);
|
61 |
+
|
62 |
+
// The reset button in the HTML calls this JS function directly
|
63 |
+
window.resetSlider = function() {{
|
64 |
+
slider.noUiSlider.set(initialRange);
|
65 |
+
}}
|
66 |
+
}}
|
67 |
+
"""
|
68 |
|
69 |
def load_models_data():
|
70 |
overall_start_time = time.time()
|
|
|
80 |
print(msg)
|
81 |
return df, True, msg
|
82 |
except Exception as e:
|
83 |
+
return pd.DataFrame(), False, f"Failed to load dataset. Error: {e}"
|
|
|
|
|
84 |
|
85 |
def get_param_range_values(param_range_labels):
|
86 |
min_label, max_label = param_range_labels
|
|
|
123 |
fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
|
124 |
return fig
|
125 |
|
126 |
+
custom_head = """
|
127 |
+
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/noUiSlider/15.7.1/nouislider.min.css">
|
128 |
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/noUiSlider/15.7.1/nouislider.min.js"></script>
|
129 |
+
"""
|
130 |
+
|
131 |
+
with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, head=custom_head) as demo:
|
132 |
models_data_state = gr.State(pd.DataFrame())
|
133 |
loading_complete_state = gr.State(False)
|
134 |
|
|
|
135 |
with gr.Row():
|
136 |
gr.Markdown("# 🤗 ModelVerse Explorer")
|
137 |
|
|
|
142 |
tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
|
143 |
pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
|
144 |
|
145 |
+
with gr.Group():
|
146 |
+
gr.HTML("""
|
147 |
+
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: -1rem;">
|
148 |
+
<label class="gradio-label">Parameters</label>
|
149 |
+
<button id="reset-params-btn" onclick="window.resetSlider()" class="gr-button gr-button-sm gr-button-secondary" style="display: none;">🔄 Reset</button>
|
150 |
+
</div>
|
151 |
+
""")
|
152 |
+
gr.HTML("""
|
153 |
+
<div id="noui-slider-container" style="margin: 2rem 1rem;"></div>
|
154 |
+
<style>
|
155 |
+
.noUi-value { font-size: 12px; color: #777; }
|
156 |
+
.noUi-pips-horizontal { padding: 10px 0; height: 50px; }
|
157 |
+
.noUi-connect { background: #000; }
|
158 |
+
.noUi-handle { border-radius: 50%; width: 22px; height: 22px; right: -11px; top: -8px; box-shadow: none; border: 2px solid #000; background: #FFF; cursor: pointer; }
|
159 |
+
.noUi-handle:focus { outline: none; }
|
160 |
+
.noUi-handle::after, .noUi-handle::before { display: none; }
|
161 |
+
</style>
|
162 |
+
""")
|
163 |
+
param_range_state_js = gr.Textbox(value=PARAM_STATE_DEFAULT_JSON, visible=False, elem_id="param-range-state-js")
|
164 |
+
|
165 |
top_k_dropdown = gr.Dropdown(label="Number of Top Organizations", choices=TOP_K_CHOICES, value=25)
|
166 |
skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
|
167 |
generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
|
|
|
170 |
plot_output = gr.Plot()
|
171 |
status_message_md = gr.Markdown("Initializing...")
|
172 |
data_info_md = gr.Markdown("")
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
def _update_button_interactivity(is_loaded_flag): return gr.update(interactive=is_loaded_flag)
|
175 |
loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)
|
|
|
194 |
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
|
195 |
status_msg_ui = status_msg_from_load
|
196 |
except Exception as e:
|
197 |
+
status_msg_ui, data_info_text, load_success_flag = f"An unexpected error occurred: {str(e)}", f"### Critical Error\n- {status_msg_ui}", False
|
|
|
|
|
|
|
198 |
return current_df, load_success_flag, data_info_text, status_msg_ui
|
199 |
|
200 |
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
|
201 |
+
param_range_json, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()):
|
202 |
if df_current_models is None or df_current_models.empty:
|
203 |
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded."
|
204 |
|
|
|
207 |
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
|
208 |
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()]
|
209 |
|
210 |
+
param_range_indices = json.loads(param_range_json)
|
211 |
min_label = PARAM_CHOICES[int(param_range_indices[0])]
|
212 |
max_label = PARAM_CHOICES[int(param_range_indices[1])]
|
213 |
param_labels_for_filtering = [min_label, max_label]
|
|
|
227 |
plot_stats_md = f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}"
|
228 |
return plotly_fig, plot_stats_md
|
229 |
|
230 |
+
final_js = custom_slider_js.format(js_param_choices=json.dumps(PARAM_CHOICES))
|
231 |
demo.load(
|
232 |
fn=ui_load_data_controller,
|
233 |
inputs=[],
|
234 |
+
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md],
|
235 |
+
js=f"() => {{ {final_js} }}"
|
236 |
)
|
237 |
|
238 |
generate_plot_button.click(
|
239 |
fn=ui_generate_plot_controller,
|
240 |
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
|
241 |
+
param_range_state_js, top_k_dropdown, skip_orgs_textbox, models_data_state],
|
242 |
outputs=[plot_output, status_message_md]
|
243 |
)
|
244 |
|
|
|
246 |
print(f"Application starting...")
|
247 |
demo.queue().launch()
|
248 |
|
249 |
+
# --- END OF FINAL, POLISHED FILE app.py ---
|