Spaces:
Running
Running
# --- START OF FINAL, POLISHED FILE app.py --- | |
import gradio as gr | |
import pandas as pd | |
import plotly.express as px | |
import time | |
from datasets import load_dataset | |
# Using the stable, community-built RangeSlider component | |
from gradio_rangeslider import RangeSlider | |
# --- Constants --- | |
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B'] | |
# The RangeSlider component uses a tuple for its default value | |
PARAM_CHOICES_DEFAULT_INDICES = (0, len(PARAM_CHOICES) - 1) | |
TOP_K_CHOICES = list(range(5, 51, 5)) | |
HF_DATASET_ID = "evijit/orgstats_daily_data" | |
TAG_FILTER_CHOICES = [ "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images", "Text", "Biomedical", "Sciences" ] | |
PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering' ] | |
def load_models_data(): | |
overall_start_time = time.time() | |
print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}") | |
try: | |
dataset_dict = load_dataset(HF_DATASET_ID) | |
df = dataset_dict[list(dataset_dict.keys())[0]].to_pandas() | |
if 'params' in df.columns: | |
df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(0) | |
else: | |
df['params'] = 0 | |
msg = f"Successfully loaded dataset in {time.time() - overall_start_time:.2f}s." | |
print(msg) | |
return df, True, msg | |
except Exception as e: | |
err_msg = f"Failed to load dataset. Error: {e}" | |
print(err_msg) | |
return pd.DataFrame(), False, err_msg | |
def get_param_range_values(param_range_labels): | |
min_label, max_label = param_range_labels | |
min_val = 0.0 if '<' in min_label else float(min_label.replace('B', '')) | |
max_val = float('inf') if '>' in max_label else float(max_label.replace('B', '')) | |
return min_val, max_val | |
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None): | |
if df is None or df.empty: return pd.DataFrame() | |
filtered_df = df.copy() | |
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot", "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science", "Video": "has_video", "Images": "has_image", "Text": "has_text" } | |
if tag_filter and tag_filter in col_map and col_map[tag_filter] in filtered_df.columns: | |
filtered_df = filtered_df[filtered_df[col_map[tag_filter]]] | |
if pipeline_filter and "pipeline_tag" in filtered_df.columns: | |
filtered_df = filtered_df[filtered_df["pipeline_tag"].astype(str) == pipeline_filter] | |
if param_range: | |
min_params, max_params = get_param_range_values(param_range) | |
is_default_range = (param_range[0] == PARAM_CHOICES[0] and param_range[1] == PARAM_CHOICES[-1]) | |
if not is_default_range and 'params' in filtered_df.columns: | |
if min_params is not None: filtered_df = filtered_df[filtered_df['params'] >= min_params] | |
if max_params is not None and max_params != float('inf'): filtered_df = filtered_df[filtered_df['params'] < max_params] | |
if skip_orgs and len(skip_orgs) > 0 and "organization" in filtered_df.columns: | |
filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)] | |
if filtered_df.empty: return pd.DataFrame() | |
if count_by not in filtered_df.columns: filtered_df[count_by] = 0.0 | |
filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors='coerce').fillna(0.0) | |
org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first') | |
top_orgs_list = org_totals.index.tolist() | |
treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy() | |
treemap_data["root"] = "models" | |
return treemap_data | |
def create_treemap(treemap_data, count_by, title=None): | |
if treemap_data.empty: | |
fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1]) | |
fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25)) | |
return fig | |
fig = px.treemap(treemap_data, path=["root", "organization", "id"], values=count_by, title=title, color_discrete_sequence=px.colors.qualitative.Plotly) | |
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25)) | |
fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>") | |
return fig | |
with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True) as demo: | |
models_data_state = gr.State(pd.DataFrame()) | |
loading_complete_state = gr.State(False) | |
with gr.Row(): | |
gr.Markdown("# 🤗 ModelVerse Explorer") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads") | |
filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None") | |
tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False) | |
pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False) | |
with gr.Group(): | |
with gr.Row(): | |
gr.Markdown("<div style='font-weight: 500; padding-top: 10px;'>Parameters</div>") | |
reset_params_button = gr.Button("🔄 Reset", visible=False, size="sm", min_width=80) | |
param_range_slider = RangeSlider( | |
minimum=0, | |
maximum=len(PARAM_CHOICES) - 1, | |
value=PARAM_CHOICES_DEFAULT_INDICES, | |
step=1, | |
label=None, | |
show_label=False, | |
) | |
param_range_display = gr.Markdown(f"Range: `{PARAM_CHOICES[0]}` to `{PARAM_CHOICES[-1]}`") | |
top_k_dropdown = gr.Dropdown(label="Number of Top Organizations", choices=TOP_K_CHOICES, value=25) | |
skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski") | |
generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False) | |
with gr.Column(scale=3): | |
plot_output = gr.Plot() | |
status_message_md = gr.Markdown("Initializing...") | |
data_info_md = gr.Markdown("") | |
def update_param_ui(value: tuple): | |
min_idx, max_idx = int(value[0]), int(value[1]) | |
is_default = (min_idx == 0 and max_idx == len(PARAM_CHOICES) - 1) | |
display_text = f"Range: `{PARAM_CHOICES[min_idx]}` to `{PARAM_CHOICES[max_idx]}`" | |
button_visibility = gr.update(visible=not is_default) | |
return display_text, button_visibility | |
param_range_slider.change(update_param_ui, param_range_slider, [param_range_display, reset_params_button]) | |
def reset_params(): | |
default_text = f"Range: `{PARAM_CHOICES[0]}` to `{PARAM_CHOICES[-1]}`" | |
return PARAM_CHOICES_DEFAULT_INDICES, default_text, gr.update(visible=False) | |
reset_params_button.click(reset_params, outputs=[param_range_slider, param_range_display, reset_params_button]) | |
def _update_button_interactivity(is_loaded_flag): return gr.update(interactive=is_loaded_flag) | |
loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button) | |
def _toggle_filters_visibility(choice): return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter") | |
filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown]) | |
def ui_load_data_controller(progress=gr.Progress()): | |
progress(0, desc=f"Loading dataset '{HF_DATASET_ID}'...") | |
try: | |
current_df, load_success_flag, status_msg_from_load = load_models_data() | |
if load_success_flag: | |
progress(0.9, desc="Processing data...") | |
date_display = "Pre-processed (date unavailable)" | |
if 'data_download_timestamp' in current_df.columns and pd.notna(current_df['data_download_timestamp'].iloc[0]): | |
ts = pd.to_datetime(current_df['data_download_timestamp'].iloc[0], utc=True) | |
date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z') | |
param_count = (current_df['params'] > 0).sum() if 'params' in current_df.columns else 0 | |
data_info_text = f"### Data Information\n- Source: `{HF_DATASET_ID}`\n- Status: {status_msg_from_load}\n- Total models loaded: {len(current_df):,}\n- Models with parameter counts: {param_count:,}\n- Data as of: {date_display}\n" | |
status_msg_ui = "Data loaded. Ready to generate plot." | |
else: | |
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}" | |
status_msg_ui = status_msg_from_load | |
except Exception as e: | |
status_msg_ui = f"An unexpected error occurred: {str(e)}" | |
data_info_text = f"### Critical Error\n- {status_msg_ui}" | |
load_success_flag = False | |
print(f"Critical error in ui_load_data_controller: {e}") | |
return current_df, load_success_flag, data_info_text, status_msg_ui | |
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice, | |
param_range_indices, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()): | |
if df_current_models is None or df_current_models.empty: | |
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded." | |
progress(0.1, desc="Preparing data...") | |
tag_to_use = tag_choice if filter_type == "Tag Filter" else None | |
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None | |
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()] | |
min_label = PARAM_CHOICES[int(param_range_indices[0])] | |
max_label = PARAM_CHOICES[int(param_range_indices[1])] | |
param_labels_for_filtering = [min_label, max_label] | |
treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, param_labels_for_filtering, orgs_to_skip) | |
progress(0.7, desc="Generating plot...") | |
title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"} | |
chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization" | |
plotly_fig = create_treemap(treemap_df, metric_choice, chart_title) | |
if treemap_df.empty: | |
plot_stats_md = "No data matches the selected filters. Please try different options." | |
else: | |
total_items_in_plot = len(treemap_df['id'].unique()) | |
total_value_in_plot = treemap_df[metric_choice].sum() | |
plot_stats_md = f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}" | |
return plotly_fig, plot_stats_md | |
demo.load( | |
fn=ui_load_data_controller, | |
inputs=[], | |
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md] | |
) | |
generate_plot_button.click( | |
fn=ui_generate_plot_controller, | |
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown, | |
param_range_slider, top_k_dropdown, skip_orgs_textbox, models_data_state], | |
outputs=[plot_output, status_message_md] | |
) | |
if __name__ == "__main__": | |
print(f"Application starting...") | |
demo.queue().launch() | |
# --- END OF FINAL, POLISHED FILE app.py --- |